sequentially cohen macaulay rees modules
play

Sequentially Cohen-Macaulay Rees modules Naoki Taniguchi Meiji - PowerPoint PPT Presentation

Seq C-M property in E Intro Filtration Survey on seq C-M modules Main results Application References Sequentially Cohen-Macaulay Rees modules Naoki Taniguchi Meiji University Joint work with T. N. An, N. T. Dung and T. T. Phuong at


  1. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Sequentially Cohen-Macaulay Rees modules Naoki Taniguchi Meiji University Joint work with T. N. An, N. T. Dung and T. T. Phuong at Purdue University October 29, 2014 . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 1 / 49

  2. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Introduction . [CGT] . N. T. Cuong, S. Goto and H. L. Truong, The equality I 2 = q I in sequentially Cohen-Macaulay rings , J. Algebra, (379) (2013), 50-79. . In [CGT], Characterized the sequentially Cohen-Macaulayness of R ( I ) where I is an m -primary ideal which contains a good parameter ideal as a reduction. ([Theorem 5.3]). . Question 1.1 . When is the Rees module R ( M ) sequentially Cohen-Macaulay ? . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 2 / 49

  3. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Contents . . Introduction 1 . . Filtration 2 . . Survey on sequentially Cohen-Macaulay modules 3 . . Main results 4 . . Sequentially Cohen-Macaulay property in E ♮ 5 . . Application –Stanley-Reisner algebras– 6 . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 3 / 49

  4. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Filtration Let R be a commutative ring. . Definition 2.1 . F = { F n } n ∈ Z is a filtration of ideals of R def ⇐ ⇒ . . F n is an ideal of R , 1 . . F n ⊇ F n +1 for ∀ n ∈ Z , 2 . . F m F n ⊆ F m + n for ∀ m, n ∈ Z and 3 . . F 0 = R . . 4 Then we put F n t n ⊆ R [ t ] , R ′ = R ′ ( F ) = F n t n ⊆ R [ t, t − 1 ] . ∑ ∑ R = R ( F ) = n ≥ 0 n ∈ Z . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 4 / 49

  5. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Let M be an R -module. . Definition 2.2 . M = { M n } n ∈ Z is an F -filtration of R -submodules of M def ⇐ ⇒ . . M n is an R -submodule of M , 1 . . M n ⊇ M n +1 for ∀ n ∈ Z , 2 . . F m M n ⊆ M m + n for ∀ m, n ∈ Z and 3 . . M 0 = M . . 4 We set t n ⊗ M n ⊆ R [ t ] ⊗ R M, ∑ R ( M ) = n ≥ 0 t n ⊗ M n ⊆ R [ t, t − 1 ] ⊗ R M. ∑ R ′ ( M ) = n ∈ Z . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 5 / 49

  6. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Here t n ⊗ M n = { t n ⊗ x | x ∈ M n } ⊆ R [ t, t − 1 ] ⊗ R M for ∀ n ∈ Z . If F 1 ̸ = R , then we put G = G ( F ) = R ′ /u R ′ , G ( M ) = R ′ ( M ) /u R ′ ( M ) where u = t − 1 . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 6 / 49

  7. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References For the rest of this section, we assume F 1 ̸ = R . . Lemma 2.3 . Suppose R is Noetherian and M is finitely generated. Then TFAE. (1) R ( M ) is a finitely generated graded R -module. (2) R ′ ( M ) is a finitely generated graded R ′ -module. (3) ∃ n 1 , n 2 , . . . , n ℓ ≥ 0 ( ℓ > 0) s.t. M n = ∑ ℓ i =1 F n − n i M n i for ∀ n ≥ max { n 1 , n 2 , . . . , n ℓ } . . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 7 / 49

  8. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References . The composite map i ε → R ′ ( M ) ψ : R ( M ) − − → G ( M ) is surjective and Ker ψ = u R ′ ( M ) ∩ R ( M ) = u [ R ( M )] + , n> 0 t n ⊗ M n . where [ R ( M )] + = ∑ . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 8 / 49

  9. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References . Assumption 2.4 . R ( F ) a Noetherian ring R ( M ) a finitely generated R -module . Then R is Noetherian and M is finitely generated. . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 9 / 49

  10. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References . Proposition 2.5 . The following assertions hold true. (1) Let P ∈ Ass R R ( M ) . Then p ∈ Ass R M , P = p R [ t ] ∩ R and { dim R/ p + 1 if dim R/ p < ∞ , F 1 ⊈ p , dim R /P = dim R/ p otherwise , where p = P ∩ R . (2) Suppose M ̸ = (0) , d = dim R M < ∞ and ∃ p ∈ Ass R M s.t. dim R/ p = d , F 1 ⊈ p . Then dim R R ( M ) = d + 1 . . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 10 / 49

  11. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References . Proof. . (1) Let P ∈ Ass R R ( M ) . Then P ∈ Ass R R [ t ] ⊗ R M , so that P = Q ∩ R for some ∪ Q ∈ Ass R [ t ] R [ t ] ⊗ R M = Ass R [ t ] R [ t ] / p R [ t ] . p ∈ Ass R M Thus p = Q ∩ R and Q = p R [ t ] for ∃ p ∈ Ass R M . Therefore P = p R [ t ] ∩ R , p = P ∩ R. Let R = R/ p . Then F = { F n R } n ∈ Z is a filtration of ideals of R and R /P ∼ = R ( F ) as graded R -algebras. . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 11 / 49

  12. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References . Corollary 2.6 . Suppose R is local, M ̸ = (0) . Then { d + 1 if ∃ p ∈ Ass R M s.t. dim R/ p = d, F 1 ⊈ p , dim R R ( M ) = d otherwise , where d = dim R M . . . Proposition 2.7 . The following assertions hold true. (1) Let P ∈ Ass R ′ R ′ ( M ) . Then p ∈ Ass R M , P = p R [ t, t − 1 ] ∩ R ′ and dim R ′ /P = dim R/ p + 1 , where p = P ∩ R . (2) Suppose M ̸ = (0) . Then dim R ′ R ′ ( M ) = dim R M + 1 . . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 12 / 49

  13. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References . Lemma 2.8 . Suppose that R is a local ring, M ̸ = (0) . Then G ( M ) ̸ = (0) and dim G G ( M ) = dim R M . . . Proof. . Let N be a unique graded maximal ideal of an H -local ring R ′ . Then R ′ ( M ) N ̸ = (0) and u ∈ N . Therefore G ( M ) N ̸ = (0) , so that G ( M ) ̸ = (0) . Hence dim G G ( M ) = dim R M . . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 13 / 49

  14. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Survey on sequentially C-M modules Let R be a Noetherian ring and M ̸ = (0) a finitely generated R -module with d = dim R M < ∞ . We put Assh R M = { p ∈ Supp R M | dim R/ p = d } . Then ∀ n ∈ Z , ∃ M n the largest R -submodule of M with dim R M n ≤ n . Let S ( M ) = { dim R N | N is an R -submodule of M, N ̸ = (0) } { dim R/ p | p ∈ Ass R M } = = { d 1 < d 2 < · · · < d ℓ = d } where ℓ = ♯ S ( M ) . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 14 / 49

  15. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Let D i = M d i for 1 ≤ ∀ i ≤ ℓ . We then have a filtration D : D 0 := (0) ⊊ D 1 ⊊ D 2 ⊊ . . . ⊊ D ℓ = M which we call the dimension filtration of M . Put C i = D i /D i − 1 for 1 ≤ ∀ i ≤ ℓ . . Definition 3.1 ([Sch, St]) . (1) M is a sequentially Cohen-Macaulay R -module def ⇐ ⇒ C i is a C-M R -module for 1 ≤ ∀ i ≤ ℓ . (2) R is a sequentially Cohen-Macaulay ring def ⇐ ⇒ dim R < ∞ and R is a sequentially C-M module over itself. . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 15 / 49

  16. Seq C-M property in E ♮ Intro Filtration Survey on seq C-M modules Main results Application References Let ∩ (0) = M ( p ) p ∈ Ass R M be a primary decomposition of (0) in M , where Ass R M/M ( p ) = { p } for ∀ p ∈ Ass R M . . Fact 3.2 ([Sch]) . The following assertions hold true. (1) D i = ∩ dim R/ p ≥ d i +1 M ( p ) for 0 ≤ ∀ i < ℓ . (2) Ass R C i = { p ∈ Ass R M | dim R/ p = d i } and Ass R D i = { p ∈ Ass R M | dim R/ p ≤ d i } for 1 ≤ ∀ i ≤ ℓ . . . . . . . . Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 16 / 49

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend