tidal love numbers of kerr black holes
play

Tidal Love numbers of Kerr black holes Alexandre Le Tiec - PowerPoint PPT Presentation

Tidal Love numbers of Kerr black holes Alexandre Le Tiec Laboratoire Univers et Th eories Observatoire de Paris / CNRS Collaborators: M. Casals & E. Franzin Submitted to PRL, gr-qc/2007.00214 Newtonian theory of Love numbers R M U = M


  1. Tidal Love numbers of Kerr black holes Alexandre Le Tiec Laboratoire Univers et Th´ eories Observatoire de Paris / CNRS Collaborators: M. Casals & E. Franzin Submitted to PRL, gr-qc/2007.00214

  2. Newtonian theory of Love numbers R M U = M r

  3. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) R M U = M r − 1 2 x a x b E ab

  4. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab R M x a x b Q ab U = M r − 1 2 x a x b E ab + 3 r 5 2

  5. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R M x a x b Q ab U = M r − 1 2 x a x b E ab + 3 r 5 2

  6. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M x a x b Q ab U = M r − 1 2 x a x b E ab + 3 r 5 2

  7. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M � � 5 � � R U = M r − 1 2 x a x b E ab 1 + 2 k 2 r

  8. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M � � 2 ℓ +1 � � R ( ℓ − 2)! U = M � x a 1 · · · x a ℓ E a 1 ··· a ℓ r − 1 + 2 k ℓ ℓ ! r ℓ � 2

  9. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M � � 2 ℓ +1 � � R U = M ( ℓ − 2)! � � r ℓ E ℓ m r − 1 + 2 k ℓ Y ℓ m ℓ ! r ℓ � 2 | m | � ℓ

  10. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M � � � 2 ℓ +1 � � R ( ℓ + 2)( ℓ + 1) � � r ℓ − 2 E ℓ m ψ 0 = 1 + 2 k ℓ 2 Y ℓ m ℓ ( ℓ − 1) r ℓ � 2 | m | � ℓ

  11. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M � � � 2 ℓ +1 � � R ( ℓ + 2)( ℓ + 1) � � r ℓ − 2 E ℓ m ψ 0 = 1 + 2 k ℓ m 2 Y ℓ m ℓ ( ℓ − 1) r ℓ � 2 | m | � ℓ

  12. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M � � � 2 ℓ +1 � � R ( ℓ + 2)( ℓ + 1) � � r ℓ − 2 E ℓ m ψ 0 = 1 + 2 k ℓ m 2 Y ℓ m ℓ ( ℓ − 1) r ℓ � 2 | m | � ℓ k ℓ m = k (0) + im χ k (1) + O ( χ 2 ) ℓ ℓ

  13. Newtonian theory of Love numbers E ab = − ∂ a ∂ b U ext ( 0 ) Q ab = λ 2 E ab R = − 2 3 k 2 R 5 E ab M � � � 2 ℓ +1 � � R ( ℓ + 2)( ℓ + 1) � � r ℓ − 2 E ℓ m ψ 0 = 1 + 2 k ℓ m 2 Y ℓ m ℓ ( ℓ − 1) r ℓ � 2 | m | � ℓ Tidal Love numbers k ℓ m ← → body’s internal structure

  14. Internal structure of neutron stars GW observations as probes of neutron star internal structure

  15. Relativistic theory of Love numbers • Electric-type and magnetic-type tidal moments: E L ∝ ˆ B L ∝ ε a 1 bc ˆ C 0 a 1 0 a 2 ; a 3 ··· a ℓ and C a 2 0 bc ; a 3 ··· a ℓ

  16. Relativistic theory of Love numbers • Electric-type and magnetic-type tidal moments: E L ∝ ˆ B L ∝ ε a 1 bc ˆ C 0 a 1 0 a 2 ; a 3 ··· a ℓ and C a 2 0 bc ; a 3 ··· a ℓ • Metric and Geroch-Hansen multipole moments: � M L = ˚ M L + δ M L + h resp g αβ + h tidal g αβ = ˚ − → αβ S L = ˚ αβ S L + δ S L ���� ���� ∼ r ℓ ∼ r − ( ℓ +1)

  17. Relativistic theory of Love numbers • Electric-type and magnetic-type tidal moments: E L ∝ ˆ B L ∝ ε a 1 bc ˆ C 0 a 1 0 a 2 ; a 3 ··· a ℓ and C a 2 0 bc ; a 3 ··· a ℓ • Metric and Geroch-Hansen multipole moments: � M L = ˚ M L + δ M L + h resp g αβ + h tidal g αβ = ˚ − → αβ S L = ˚ αβ S L + δ S L ���� ���� ∼ r ℓ ∼ r − ( ℓ +1) • Two families of tidal deformability parameters: δ M L = λ el δ S L = λ mag ℓ E L and B L ℓ

  18. Relativistic theory of Love numbers • Electric-type and magnetic-type tidal moments: E L ∝ ˆ B L ∝ ε a 1 bc ˆ C 0 a 1 0 a 2 ; a 3 ··· a ℓ and C a 2 0 bc ; a 3 ··· a ℓ • Metric and Geroch-Hansen multipole moments: � M L = ˚ M L + δ M L + h resp g αβ + h tidal g αβ = ˚ − → αβ S L = ˚ αβ S L + δ S L ���� ���� ∼ r ℓ ∼ r − ( ℓ +1) • Two families of tidal deformability parameters: δ M L = λ el δ S L = λ mag ℓ E L and B L ℓ • Dimensionless tidal Love numbers: λ el/mag ≡ − (2 ℓ − 1)!! k el/mag ℓ ℓ 2( ℓ − 2)! R 2 ℓ +1

  19. Love numbers of spinning compact objects • The spin breaks the spherical symmetry of the background ◦ No proportionality between ( δ M L , δ S L ) and ( E L , B L ) ◦ Degeneracy of the azimuthal number m lifted ◦ Parity mixing and mode couplings allowed

  20. Love numbers of spinning compact objects • The spin breaks the spherical symmetry of the background ◦ No proportionality between ( δ M L , δ S L ) and ( E L , B L ) ◦ Degeneracy of the azimuthal number m lifted ◦ Parity mixing and mode couplings allowed • Metric and Geroch-Hansen multipole moments: � M ℓ m = ˚ M ℓ m + δ M ℓ m + h resp g αβ + h tidal g αβ = ˚ − → αβ S ℓ m = ˚ αβ S ℓ m + δ S ℓ m ���� ���� ∼ r ℓ ∼ r − ( ℓ +1)

  21. Love numbers of spinning compact objects • The spin breaks the spherical symmetry of the background ◦ No proportionality between ( δ M L , δ S L ) and ( E L , B L ) ◦ Degeneracy of the azimuthal number m lifted ◦ Parity mixing and mode couplings allowed • Metric and Geroch-Hansen multipole moments: � M ℓ m = ˚ M ℓ m + δ M ℓ m + h resp g αβ + h tidal g αβ = ˚ − → αβ S ℓ m = ˚ αβ S ℓ m + δ S ℓ m ���� ���� ∼ r ℓ ∼ r − ( ℓ +1) • Four families of tidal deformability parameters: ℓℓ ′ mm ′ ≡ ∂δ M ℓ m ℓℓ ′ mm ′ ≡ ∂δ S ℓ m λ M E λ S B ∂ E ℓ ′ m ′ ∂ B ℓ ′ m ′ ℓℓ ′ mm ′ ≡ ∂δ S ℓ m ℓℓ ′ mm ′ ≡ ∂δ M ℓ m λ S E λ M B ∂ E ℓ ′ m ′ ∂ B ℓ ′ m ′

  22. Black holes have zero Love numbers Reference Background Tidal field Schwarzschild weak, generic ℓ [Binnington & Poisson 2009] Schwarzschild weak, generic ℓ [Damour & Nagar 2009] Schwarzschild weak, electric-type [Kol & Smolkin 2012] Schwarzschild weak, electric, ℓ = 2 [Chakrabarti et al. 2013] Schwarzschild strong, axisymmetric [G¨ urlebeck 2015] [Landry & Poisson 2015] Kerr to O ( S ) weak, quadrupolar Kerr to O ( S 2 ) weak, ( ℓ, m ) = (2 , 0) [Pani et al. 2015] Problem of fine-tuning from an Effective-Field-Theory perspective

  23. Investigating Kerr’s Love S = χ M 2 ( E ℓ m , B ℓ m ) M ( E ℓ m , B ℓ m ) → ψ 0 → Ψ → h αβ → ( M ℓ m , S ℓ m ) → λ M / S , E / B ℓ m Metric reconstruction through the Hertz potential Ψ

  24. Perturbed Weyl scalar • Recall that in the Newtonian limit we established ∝ E ℓ m r ℓ − 2 � 1 + 2 k ℓ m ( R / r ) 2 ℓ +1 � c →∞ ψ ℓ m lim 2 Y ℓ m ( θ, φ ) 0 • For a Kerr black hole the perturbed Weyl scalar reads � � ψ ℓ m 3 i ∝ E ℓ m + ℓ +1 B ℓ m R ℓ m ( r ) 2 Y ℓ m ( θ, φ ) 0 • Asymptotic behavior of general solution of static radial Teukolsky equation: R ℓ m ( r ) = r ℓ − 2 (1 + · · · ) + κ ℓ m r − ℓ − 3 (1 + · · · ) � �� � � �� � linear response R resp tidal field R tidal ℓ m ℓ m

  25. Why analytic continuation? R ℓ m ( r ) = r ℓ − 2 (1 + · · · ) + κ ℓ m r − ℓ − 3 (1 + · · · ) � �� � � �� � linear response R resp tidal field R tidal ℓ m ℓ m Ambiguity in the linear response [Fang & Lovelace 2005; Gralla 2018] The decaying solution R resp is affected by a radial coord. transfo. ℓ m Ambiguity in the tidal field [Pani, Gualtieri, Maselli & Ferrari 2015] ℓ m + α R resp The growing solution R tidal still qualifies as a tidal solution ℓ m

  26. Kerr black hole linear response R ℓ m ( r ) = R tidal + 2 k ℓ m R resp ℓ m ( r ) ℓ m ( r ) � �� � � �� � ∼ r ℓ − 2 ∼ r − ( ℓ +3) • The coefficients k ℓ m can be interpreted as the Newtonian Love numbers of a Kerr black hole and read ℓ k ℓ m = − im χ ( ℓ + 2)!( ℓ − 2)! � � n 2 (1 − χ 2 ) + m 2 χ 2 � 4(2 ℓ + 1)!(2 ℓ )! n =1 • The linear response vanishes identically when: ◦ the black hole spin vanishes ( χ = 0) ◦ the tidal field is axisymmetric ( m = 0) • Reconstruct the Kerr black hole response h resp αβ via Ψ resp

  27. Love numbers of a Kerr black hole • We compute the Love numbers to linear order in χ ≡ S / M 2

  28. Love numbers of a Kerr black hole • We compute the Love numbers to linear order in χ ≡ S / M 2 • The modes of the mass/current quadrupole moments are = im χ = im χ δ M 2 m . δ S 2 m . 180 (2 M ) 5 E 2 m 180 (2 M ) 5 B 2 m and

  29. Love numbers of a Kerr black hole • We compute the Love numbers to linear order in χ ≡ S / M 2 • The modes of the mass/current quadrupole moments are = im χ = im χ δ M 2 m . δ S 2 m . 180 (2 M ) 5 E 2 m 180 (2 M ) 5 B 2 m and • The black hole tidal bulge is rotated by 45 ◦ with respect to the quadrupolar tidal perturbation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend