non linear simulations of edge localized modes in asdex
play

Non-linear Simulations of Edge Localized Modes in ASDEX Upgrade - PowerPoint PPT Presentation

Non-linear Simulations of Edge Localized Modes in ASDEX Upgrade Matthias H olzl (Postdoc at IPP Garching) 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H olzl, I. Krebs, K. Lackner, S. G unter Nonlinear ELM


  1. Non-linear Simulations of Edge Localized Modes in ASDEX Upgrade Matthias H¨ olzl (Postdoc at IPP Garching)

  2. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 2

  3. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 3

  4. Introduction Edge Localized Modes Z (m) Te [eV] 1.0 800 Electron temperature measured with ECE-Imaging at an ELM onset in 0.5 600 ASDEX Upgrade: Dominant toroidal Fourier harmonic n ≈ 11 [J. E. Boom, et al. 37th EPS, P2.119 (2010)] 400 0.0 -0.5 200 q=4 -1.0 R (m) 0 1.0 1.5 2.0 Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 4

  5. Introduction Localization ⊲ ASDEX Upgrade: Expanded and localized ELMs observed (distribution) #25764@1.7574s 7 dB/dt [a.u.] + Φ MAP [rad] Signature of a Solitary Magnetic 6 Perturbation in ASDEX Upgrade [R. P . Wenninger, et al. Nucl.Fusion, 42, 114025 (2012)] 5 -0.2 -0.1 0 0.1 0.2 t-t ELM [ms] Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 5

  6. Introduction Low-n Harmonics 0.4 δB av [mT] 0 -0.4 0 π/2 π 3π/2 2π φ [rad] Example for ELM signature with 0.4 strong low-n component harmonics 0.2 Fourier 0 0 2 4 6 8 toroidal mode number n 15 10 Histogram of dominant components # in a TCV discharge (23 ELMs) 5 [R. P . Wenninger, et al. Nucl.Fusion (to be submitted)] TCV #42062 0 1 2 3 dominant toroidal harmonic Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 6

  7. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 7

  8. Model JOREK ⊲ Originally developed at CEA Cadarache [G. Huysmans and O. Czarny. Nucl.Fusion , 47, 659 (2007)] ⊲ Non-linear reduced MHD in toroidal geometry (next slide) ⊲ Two-fluid extensions ⊲ Full MHD in development ⊲ Bezier finite elements + Toroidal Fourier decomposition ⊲ Fully implicit time evolution ⊲ GMRES with physics-based preconditioning Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 8

  9. Model Reduced MHD Equations ∂Ψ ∂u ∂t = ηj − R [ u , Ψ ] − F 0 ∂φ ∂ρ ∂t = − ∇ · ( ρ v ) + ∇ · ( D ⊥ ∇ ⊥ ρ ) + S ρ ∂ ( ρT ) � � = − v · ∇ ( ρT ) − γρT ∇ · v + ∇ · K ⊥ ∇ ⊥ T + K || ∇ || T + S T ∂t � � ρ∂ v e φ · ∇ × ∂t = − ρ ( v · ∇ ) v − ∇ p + j × B + µ∆ v � � ρ∂ v B · ∂t = − ρ ( v · ∇ ) v − ∇ p + j × B + µ∆ v j ≡ − j φ = ∆ ∗ Ψ ω ≡ − ω φ = ∇ 2 pol u Variables: Ψ , u , j , ω , ρ , T , v || Definitions: B ≡ F 0 R e φ + 1 R ∇ Ψ × e φ and v ≡ − R ∇ u × e φ + v || B [H. R. Strauss. Phys.Fluids , 19, 134 (1976)] Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 9

  10. Model Typical code run ⊲ Initial grid (Grids shown with reduced resolution) ⊲ Flux aligned grid including X-point(s) ⊲ Equilibrium flows ⊲ Time-integration Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 10

  11. Model Typical code run ⊲ Initial grid (Grids shown with reduced resolution) ⊲ Flux aligned grid including X-point(s) ⊲ Equilibrium flows ⊲ Time-integration Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 10

  12. Model Typical code run ⊲ Initial grid (Grids shown with reduced resolution) ⊲ Flux aligned grid including X-point(s) ⊲ Equilibrium flows ⊲ Time-integration Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 10

  13. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 11

  14. Results Overview ⊲ ELMs in typical ASDEX Upgrade H-mode equilibrium ⊲ Many toroidal harmonics ⊲ Resistivity too large by factor 10 due to numerical constraints (improving) 7 6 5 q-profile 4 3 2 1 0 1 normalized quantities 0.8 0.6 0.4 ρ 0.2 T 0 0 0.2 0.4 0.6 0.8 1 Ψ N Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 12

  15. Results Poloidal Flux Perturbation n = 0, 8, 16 ⊲ Red/blue surfaces correspond to 70 percent of maximum/minimum values [M. H¨ olzl, et al. 38th EPS , P2.078 (2011); M. H¨ olzl, et al. Phys.Plasmas , 19, 082505 (2012b)] Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 13

  16. Results Poloidal Flux Perturbation n = 0, 1, 2, 3, 4, . . . , 16 ⊲ Red/blue surfaces correspond to 70 percent of maximum/minimum values ⊲ Localized due to several strong harmonics with adjacent n ⇒ Similar to Solitary Magnetic Perturbations in ASDEX Upgrade [M. H¨ olzl, et al. 38th EPS , P2.078 (2011); M. H¨ olzl, et al. Phys.Plasmas , 19, 082505 (2012b)] Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 13

  17. Results Mode Interaction Model 1e-06 n=16 n=12 n= 8 1e-08 n= 4 1e-10 magnetic energies [a.u.] 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 420 440 460 480 500 520 540 560 580 time [ µ s] ⊲ Non-linear drive of low-n modes ⊲ Start with simplified case including n = 0, 4, 8, 12, 16 (periodicity 4) Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 14

  18. Results Mode Interaction Model ⊲ Quadratic terms lead to mode coupling ( n 1 , n 2 ) ↔ n 1 ± n 2 ⊲ For instance: ( 16, 12 ) ↔ 4 ⊲ Model assuming mode rigidity and fixed background: linear non-linear interaction � �� � � �� � ˙ A 4 = γ 4 A 4 + γ 8, − 4 A 8 A 4 + γ 12, − 8 A 12 A 8 + γ 16, − 12 A 16 A 12 ˙ A 8 = γ 8 A 8 + γ 4,4 A 4 A 4 + γ 12, − 4 A 12 A 4 + γ 16, − 8 A 16 A 8 ˙ A 12 = γ 12 A 12 + γ 4,8 A 4 A 8 + γ 16, − 4 A 16 A 4 ˙ A 16 = γ 16 A 16 + γ 8,8 A 8 A 8 + γ 4,12 A 4 A 12 ⊲ Linear growth rates from JOREK simulation + Energy conservation ⊲ Determine few free parameters by minimizing quadratic differences [I. Krebs. Master’s thesis, LMU, Munich (2012)] Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 15

  19. Results Mode Interaction Model 1e-06 n=16 n=12 n= 8 1e-08 n= 4 1e-10 magnetic energies [a.u.] 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 420 440 460 480 500 520 540 560 580 time [ µ s] ⊲ Non-linear drive recovered ⊲ Saturation not recovered (of course) Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 16

  20. Results Mode Interaction Model n=10 1e-06 n=9 n=2 1e-08 n=1 magnetic energies [a.u.] 1e-10 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 500 520 540 560 580 time [ µ s] ⊲ Applied to full simulation with n = 0 . . . 16 ⊲ Explains low-n features in experimental observations [I. Krebs, et al. Phys.Plasmas (to be submitted)] Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 17

  21. Results Mode Interaction Model n=10 1e-06 n=9 n=2 1e-08 n=1 magnetic energies [a.u.] 1e-10 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 500 520 540 560 580 time [ µ s] ⊲ Applied to full simulation with n = 0 . . . 16 ⊲ Explains low-n features in experimental observations [I. Krebs, et al. Phys.Plasmas (to be submitted)] Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 17

  22. Results Non-linear phase 1 E mag,00 E mag,08 E kin,00 E kin,08 1e-05 energies [a.u.] 1e-10 1e-15 1e-20 300 400 500 600 700 800 time [ µ s] ⊲ Energy time traces during an ELM crash ⊲ Simulation with n = 0, 8 ⊲ Several bursts Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 18

  23. Results Non-linear phase 1e-05 E mag,08 E kin,00 E kin,08 energies [a.u.] 1e-06 1e-07 300 400 500 600 700 800 time [ µ s] ⊲ Energy time traces during an ELM crash ⊲ Simulation with n = 0, 8 ⊲ Several bursts Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 18

  24. Results Filament Formation Detached filaments quickly lose their pressure due to fast parallel heat conduction. Substructures appear in divertor heat flux patterns. Matthias H¨ olzl, I. Krebs, K. Lackner, S. G¨ unter Nonlinear ELM Simulations ITPA PEP Meeting, Garching, 04/2013 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend