non linear mhd simulations of edge localized modes in
play

Non-linear MHD Simulations of Edge Localized Modes in ASDEX Upgrade - PowerPoint PPT Presentation

Non-linear MHD Simulations of Edge Localized Modes in ASDEX Upgrade Matthias H olzl, Isabel Krebs, Karl Lackner, Sibylle G unter 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H olzl Nonlinear ELM Simulations


  1. Non-linear MHD Simulations of Edge Localized Modes in ASDEX Upgrade Matthias H¨ olzl, Isabel Krebs, Karl Lackner, Sibylle G¨ unter

  2. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 2

  3. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 3

  4. Introduction H-Mode ⊲ High Confinement Mode first observed in ASDEX [F. Wagner, et al. PRL , 49, 1408 (1982)] ⊲ Sudden rise of edge gradients and confinement time ⊲ Extremely beneficial for fusion Formation of density pedestal during L-H transition [M. E. Manso. PPCF, 35, B141 (1993)] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 4

  5. Introduction ELMs 0.8 T e [keV] 0.6 0.4 2.8 2.9 3.0 time [s] ⊲ Edge Localized Modes (ELMs) appear in H-Mode ⊲ Periodic collapse of pedestal ⊲ Up to 10% of stored energy lost ⊲ Critical for ITER → mitigation Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 5

  6. Introduction ELMs (2) Z (m) Te [eV] 1.0 800 0.5 600 0.0 400 Electron temperature at ELM onset in ASDEX Upgrade: Dominant toroidal Fourier harmonic n ≈ 11 -0.5 200 [J. E. Boom, et al. 37th EPS, P2.119 (2010)] q=4 -1.0 R (m) 0 1.0 1.5 2.0 Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 6

  7. Introduction Localization ⊲ ASDEX Upgrade: Expanded and localized ELMs observed #25764@1.7574s 7 dB/dt [a.u.] + Φ MAP [rad] 6 Signature of a Solitary Magnetic Perturbation in ASDEX Upgrade [R. P . Wenninger, et al. Nucl.Fusion, 42, 114025 (2012)] 5 -0.2 -0.1 0 0.1 0.2 t-t ELM [ms] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 7

  8. Introduction Low-n Harmonics 0.4 δB av [mT] 0 -0.4 0 π/2 π 3π/2 2π φ [rad] Example for ELM signature with 0.4 strong low-n component harmonics 0.2 Fourier 0 0 2 4 6 8 toroidal mode number n 15 10 Histogram of dominant components # in a TCV discharge (23 ELMs) 5 [R. P . Wenninger, et al. to be published (2013)] TCV #42062 0 1 2 3 dominant toroidal harmonic Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 8

  9. Introduction Theory Poloidal flux perturbation caused by a ballooning instability (linear MHD calculation) Non-linear simulations ⊲ Low mode numbers ⊲ Localization ⊲ ELM sizes ⊲ Mitigation . . . Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 9

  10. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 10

  11. Model JOREK ⊲ Originally developed at CEA Cadarache [G. Huysmans and O. Czarny. Nucl.Fusion , 47, 659 (2007); O. Czarny and G. Huysmans. J.Comput.Phys , 227, 7423 (2008)] ⊲ Non-linear reduced MHD in toroidal geometry (next slide) ⊲ Full MHD in development ⊲ Toroidal Fourier decomposition ⊲ Bezier finite elements ⊲ Fully implicit time evolution ⊲ Selected results: • Pellet ELM triggering [G. Huysmans, et al. 23rd IAEA , THS/7-1 (2010)] • ELMs in JET [S. J. P . Pamela, et al. PPCF , 53, 054014 (2011)] • RMP field penetration [M. Becoulet, et al. 24th IAEA , TH/2-1 (2012)] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 11

  12. Model Reduced MHD Equations ∂Ψ ∂u ∂t = ηj − R [ u , Ψ ] − F 0 ∂φ ∂ρ ∂t = − ∇ · ( ρ v ) + ∇ · ( D ⊥ ∇ ⊥ ρ ) + S ρ ∂ ( ρT ) � � = − v · ∇ ( ρT ) − γρT ∇ · v + ∇ · K ⊥ ∇ ⊥ T + K || ∇ || T + S T ∂t � � ρ∂ v ∂t = − ρ ( v · ∇ ) v − ∇ p + j × B + µ∆ v e φ · ∇ × � � ρ∂ v ∂t = − ρ ( v · ∇ ) v − ∇ p + j × B + µ∆ v B · j ≡ − j φ = ∆ ∗ Ψ ω ≡ − ω φ = ∇ 2 pol u Variables: Ψ , u , j , ω , ρ , T , v || Definitions: B ≡ F 0 R e φ + 1 R ∇ Ψ × e φ and v ≡ − R ∇ u × e φ + v || B [H. R. Strauss. Phys.Fluids , 19, 134 (1976)] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 12

  13. Model Typical code run ⊲ Initial grid (Grids shown with reduced resolution) ⊲ Flux aligned grid including X-point(s) ⊲ Radial and poloidal grid meshing ⊲ Equilibrium flows ⊲ Time-integration ⊲ Postprocessing Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 13

  14. Model Typical code run ⊲ Initial grid (Grids shown with reduced resolution) ⊲ Flux aligned grid including X-point(s) ⊲ Radial and poloidal grid meshing ⊲ Equilibrium flows ⊲ Time-integration ⊲ Postprocessing Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 13

  15. Model Typical code run ⊲ Initial grid (Grids shown with reduced resolution) ⊲ Flux aligned grid including X-point(s) ⊲ Radial and poloidal grid meshing ⊲ Equilibrium flows ⊲ Time-integration ⊲ Postprocessing Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 13

  16. 1 Introduction 2 Model 3 Results 4 Outlook 5 Summary Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 14

  17. Results Overview ⊲ ELMs in typical ASDEX Upgrade H-mode equilibrium ⊲ Many toroidal harmonics ⊲ Resistivity too large by factor 10 due to numerical constraints (improving) 7 6 5 q-profile 4 3 2 1 q = toroidal turns poloidal turns 0 1 normalized quantities 0.8 0.6 0.4 ρ 0.2 T 0 0 0.2 0.4 0.6 0.8 1 Ψ N Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 15

  18. Results Poloidal Flux Perturbation n = 0, 8, 16 ⊲ Red/blue surfaces correspond to 70 percent of maximum/minimum values [M. H¨ olzl, et al. 38th EPS , P2.078 (2011); M. H¨ olzl, et al. Phys.Plasmas , 19, 082505 (2012b)] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 16

  19. Results Poloidal Flux Perturbation n = 0, 1, 2, 3, 4, . . . , 16 ⊲ Red/blue surfaces correspond to 70 percent of maximum/minimum values ⊲ Localized due to several strong harmonics with adjacent n ⇒ Similar to Solitary Magnetic Perturbations in ASDEX Upgrade [M. H¨ olzl, et al. 38th EPS , P2.078 (2011); M. H¨ olzl, et al. Phys.Plasmas , 19, 082505 (2012b)] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 16

  20. Results Energy Timetraces n=10 1e-06 1e-08 magnetic energies [a.u.] 1e-10 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 220 230 240 250 260 270 280 290 300 time [ µ s] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 17

  21. Results Energy Timetraces other 1e-06 n=10 n= 9 1e-08 magnetic energies [a.u.] 1e-10 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 220 230 240 250 260 270 280 290 300 time [ µ s] ⊲ Simulation including n = 0, 1, . . . , 15, 16 ⊲ n = 9 and 10 are linearly most unstable Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 17

  22. Results Energy Timetraces other 1e-06 n=10 n= 9 1e-08 n= 2 n= 1 magnetic energies [a.u.] 1e-10 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 220 230 240 250 260 270 280 290 300 time [ µ s] ⊲ Simulation including n = 0, 1, . . . , 15, 16 ⊲ n = 9 and 10 are linearly most unstable ⊲ low-n modes driven non-linearly to large amplitudes ⊲ Can we understand this with a simple model? Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 17

  23. Results Mode Interaction Model 1e-06 n=16 n=12 n= 8 1e-08 n= 4 1e-10 magnetic energies [a.u.] 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 420 440 460 480 500 520 540 560 580 time [ µ s] ⊲ Simplified case with n = 0, 4, 8, 12, 16 ⊲ Quadratic terms lead to mode coupling ( n 1 , n 2 ) ↔ n 1 ± n 2 ⊲ For instance: ( 16, 12 ) ↔ 4 Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 18

  24. Results Mode Interaction Model (2) ⊲ Model assuming mode rigidity and fixed background: linear non-linear interaction � �� � � �� � ˙ A 4 = γ 4 A 4 + γ 8, − 4 A 8 A 4 + γ 12, − 8 A 12 A 8 + γ 16, − 12 A 16 A 12 [I. Krebs, et al. to be published (2013)] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 19

  25. Results Mode Interaction Model (2) ⊲ Model assuming mode rigidity and fixed background: linear non-linear interaction � �� � � �� � ˙ A 4 = γ 4 A 4 + γ 8, − 4 A 8 A 4 + γ 12, − 8 A 12 A 8 + γ 16, − 12 A 16 A 12 ˙ A 8 = γ 8 A 8 + γ 4,4 A 4 A 4 + γ 12, − 4 A 12 A 4 + γ 16, − 8 A 16 A 8 ˙ A 12 = γ 12 A 12 + γ 4,8 A 4 A 8 + γ 16, − 4 A 16 A 4 ˙ A 16 = γ 16 A 16 + γ 8,8 A 8 A 8 + γ 4,12 A 4 A 12 ⊲ Linear growth rates from JOREK simulation + Energy conservation ⊲ Determine few free parameters by minimizing quadratic differences [I. Krebs, et al. to be published (2013)] Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 19

  26. Results Mode Interaction Model (2) 1e-06 n=16 n=12 n= 8 1e-08 n= 4 1e-10 magnetic energies [a.u.] 1e-12 1e-14 1e-16 1e-18 1e-20 1e-22 420 440 460 480 500 520 540 560 580 time [ µ s] ⊲ Non-linear drive recovered ⊲ Saturation not recovered (of course) ⊲ Explains low-n features in experimental observations → Poster: Isabel Krebs, P19.15 (Thursday) Matthias H¨ olzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend