three extremalization principles in ads cft with eight
play

Three Extremalization Principles in AdS/CFT with Eight Supercharges - PowerPoint PPT Presentation

Three Extremalization Principles in AdS/CFT with Eight Supercharges Yuji Tachikawa (Univ. of Tokyo, Hongo) partially based on [YT, hep-th/0507057] with special thanks to Y. Ookouchi March, 2006 @ KEK 0/31 type IIB on AdS 5 X 5


  1. Three Extremalization Principles in AdS/CFT with Eight Supercharges Yuji Tachikawa (Univ. of Tokyo, Hongo) partially based on [YT, hep-th/0507057] with special thanks to Y. Ookouchi March, 2006 @ KEK 0/31

  2. ⋄ type IIB on AdS 5 × X 5 ⇐ ⇒ CFT 4 8 supercharges: ⋄ • N = 1 SCFT 4 • N = 2 5d sugra • X 5 : Sasaki-Einstein R -symmetry in the superconformal algebra ⋄ = linear combination of U (1) charges which is determined by the extremalization principles ⋄ 1/31

  3. ⋄ type IIB on AdS 5 × X 5 ⇐ ⇒ CFT 4 8 supercharges: ⋄ a • N = 1 SCFT 4 ⇒ -maximization [Intriligator-Wecht] P • N = 2 5d sugra ⇒ -minimization [YT] Z • ⇒ X 5 : Sasaki-Einstein -minimization [Martelli-Sparks-Yau] R -symmetry in the superconformal algebra ⋄ = linear combination of U (1) charges which is determined by the extremalization principles ⋄ 1/31

  4. ⋄ type IIB on AdS 5 × X 5 ⇐ ⇒ CFT 4 8 supercharges: ⋄ central charge • N = 1 SCFT 4 ⇒ -maximization superpotential • N = 2 5d sugra ⇒ -minimization volume • ⇒ X 5 : Sasaki-Einstein -minimization R -symmetry in the superconformal algebra ⋄ = linear combination of U (1) charges which is determined by the extremalization principles ⋄ 1/31

  5. CONTENTS ⇒ 1. a -maximization ⋄ 2. P -minimization ⋄ 3. Z -minimization ⋄ 4. Conclusion 2/31

  6. 1. a -maximization Intriligator-Wecht, hep-th/0304128 2/31

  7. ⋄ Studying Dynamics in 4d ⇒ Extra symmetry helps N = 1 Susy Algebra in 4d { Q α , Q † β } = σ µ β P µ ˙ α ˙ Conformal Algebra in 4d [ K µ , P ν ] ∼ ∆ δ µν N = 1 Superconformal Algebra in 4d { Q α , S α } ∼ R SC + · · · [ R SC , Q α ] = − Q α [ R SC , S α ] = S α 3/31

  8. R SC carries a lot of info: ⋄ ∆ ≥ 3 2 R SC , • equal for chiral primaries a = 3 32 (3 tr R 3 SC − tr R SC ) • cf. On a curved mfd, � T µ µ � = a × Euler + c × Weyl 2 where Euler and Weyl are polynomials in R µνρσ 4/31

  9. Many global symmetries Q I with [ Q I , Q α ] = − ˆ ⋄ P I Q α . R SC is a linear combination : R SC = r I Q I . ⋄ How can we find R SC ? Call Q F = f I Q I with [ Q F , Q α ] = 0 a flavor symmetry. ⋄ R SC T µ ν Q F Q F ← → SUSY R SC T µ ν 9 tr Q F R SC R SC = tr Q F 5/31

  10. [ r I Q I , Q α ] = − Q α ⇒ r I ˆ ⋄ P I = 1 . 32 (3 tr R ( s ) 3 − tr R ( s )) where R ( s ) = s I Q I . Let a ( s ) = 3 ⋄ 9 tr Q F R SC R SC = tr Q F ⇒ r I extremizes a ( s ) under s I ˆ ⋄ P I = 1 . ⋄ Unitarity ⇒ it’s a local maximum. a -maximization ! ⋄ c IJK = tr Q I Q J Q K and ˆ ˆ c I = tr Q I : Calculable at UV using ’t Hooft’s anomaly matching. 6/31

  11. の 図 の 図 の 図 と AdS 5 × Y p,q ⇔ Y 4 , 3 SU ( N ) 2 p gauge theory with four bifundamentals W α U i V i Y Z I p − q multiplicity 2 p p + q p q 1 − ( s 1 + s 2 ) / 2 1 + ( s 2 − s 1 ) / 2 R-sym 1 s 1 s 2 Maximize a ( s 1 , s 2 ) ⇒ � 3 � a = p 2 � 4 p 2 − 3 q 2 − 8 p 3 + 9 pq 2 + 4 q 4 7/31

  12. CONTENTS � 1. a -maximization ⇒ 2. P -minimization ⋄ 3. Z -minimization ⋄ 4. Conclusion 8/31

  13. 2. P -minimization YT, hep-th/0507057 8/31

  14. ⋄ Any CFT phenomena ⇒ AdS counterpart via Gubser-Klebanov-Polyakov, Witten AdS CFT O φ � ˆ � φ ( x ) O ( x ) d 4 x � � e − � x 5 = ∞ = ˆ Z [ φ ( x ) φ ( x )] = J µ A I ↔ I : current for Q I µ � ˆ µ J µ A I � � e − I � SCF T Z [ A I � x 5 = ∞ = ˆ A I µ ( x ) µ ( x )] How about central charge maximization ? ⋄ ⇒ superpotential minimization ! 9/31

  15. Q I has triangle anomalies among them : � ˆ � 1 µ J µ A I c IJK χ I F J ∧ F K δ χ ( � e − I � SCF T ) = d 4 x 24 π 2 ˆ � 1 c IJK dχ I ∧ F J ∧ F K d 5 x = 24 π 2 ˆ �� � 1 c IJK A I ∧ F J ∧ F K d 5 x = δ χ 24 π 2 ˆ ⇒ Presence of Chern-Simons terms in AdS c I A I ∧ tr R ∧ R , higher derivative effect. ⋄ c I = tr Q I ↔ ˆ ˆ 10/31

  16. ⋄ 4d N = 1 SCFT ⇒ 5d N = 2 supergravity Multiplet structure Minimal number of supercharges is 8 , called N = 2 ⋄ Gravity multiplet, Vector multiplet, Hyper multiplet ⋄ Gravity multiplet ψ i A I g µν , µ , µ ⋄ i = 1 , 2 : index for SU (2) R . ⋄ I : explained in a second 11/31

  17. Vector Multiplet A I λ x φ x µ , i , ⋄ I : 0 , . . . , n V and x : 1 , . . . , n V cf. I labels integral basis; graviphoton is a mixture of A I µ . φ x parametrize a hypersurface ⋄ F = c IJK h I h J h K = 1 in ( n V + 1) dim space of { h I } ; c IJK constants h I = h I ( φ x ) : special coordinates ⋄ 12/31

  18. ⋄ Kinetic terms determined by c IJK : − 1 2 g xy ( φ ) ∂ µ φ x ∂ µ φ y − 1 4 a IJ ( φ ) F I µν F J µν Presence of the Chern-Simons term : ⋄ 1 c IJK ǫ µνρστ A I µ F J νρ F K √ στ 6 6 √ 6 ⇒ c IJK = 16 π 2 tr Q I Q J Q K . 13/31

  19. Potential P r I : triplet generalization of the Fayet-Iliopoulos term ⋄ where r = 1 , 2 , 3 label the triplets in SU (2) R . ⋄ The potential V is given by V = 3 g xy ∂ x P r ∂ y P r − 4 P r P r where P r = P r I h I , Gukov-Vafa-Witten type . 14/31

  20. P r appears everywhere: ⋄ • Covariant derivative of the gravitino jI ψ j D ν ψ i µ = ∂ ν ψ i µ + A I µ P i I • SUSY transformation law δ ǫ φ x = i ǫ i λ x 2¯ i � 2 3 ∂ x P ij + · · · δ ǫ λ i x = − ǫ j where P i j = P r σ ri j 15/31

  21. Recap. Field theory Supergravity ⇔ c IJK h I h J h K = 1 c IJK = tr Q I Q J Q K ˆ [ Q I , Q α ] = − ˆ P I Q α D µ ψ i ν = ( ∂ µ + P i jI A I µ ) ψ ν ??? a -max 16/31

  22. SUSY condition for sugra δλ = ǫ j ∂ x P ij = 0 ⇒ � h I ,x � P ij ⋄ = 0 I � h ∗ ,x � and P r ∗ is perpendicular as ( n V + 1) dim’l vectors. ⋄ x = 1 , . . . , n V ⇒ P r =1 , 2 , 3 are parallel ⇒ P r =1 , 2 = 0 , P r =3 � = 0 . ⋄ c IJK h I h J h K = 1 ⇒ c IJK h I h J h K ⋄ ,x = 0 � �� � h K � h I � ∝ P r =3 : Attractor Eq. I 17/31

  23. ⋄ Recall AdS CFT Q α , S α ↔ ψ µ A I ↔ Q I µ jI ψ j D ν ψ i µ = ∂ ν ψ i µ + A I µ P i [ Q I , Q α ] = − ˆ ↔ P I Q α . I ⇒ P r =1 , 2 = 0 ⇒ charge of Q α , S α under Q I is ± P r =3 . I ⇒ P r =3 = ˆ P I . I 18/31

  24. SUSY tr. of hypers ⇒ R SC = r I Q I ∝ � h I � Q I . ⋄ � h I � Recall r I P I = 1 . ⇒ r I = ⋄ . � h I � P I h I Suppose s I = R trial = s I Q I . ⋄ ⇒ h I P I c IJK s I s J s K = c IJK h I h J h K a ( s ) ∝ tr ( s I Q I ) 3 = ˆ ∝ ( h I P I ) − 3 . ( h I P I ) 3 a -max = P -min ! ⋄ δλ = h I ,x P I = ( h I P I ) ,x = P ,x = 0 19/31

  25. CONTENTS � 1. a -maximization � 2. P -minimization ⇒ 3. Z -minimization ⋄ 4. Conclusion 20/31

  26. 3. Z -minimization Martelli-Sparks-Yau, hep-th/0503183 hep-th/0603021 20/31

  27. ⋄ Consider a D3 brane probing the tip of the CY cone Y Y = dr 2 + r 2 ds 2 ds 2 X D3 at the tip X :Sasaki-Einstein × Y :Calabi-Yau (1+3) d 1d 5d 21/31

  28. Low energy theory on the D3 Near Horizon Limit of the D3 × × AdS 5 × X 5 Some quiver gauge theory Describe the same physics. AdS/CFT correspondence [Maldacena] 22/31

  29. Field theory on M 3 , 1 Gravity on AdS 5 × X 5 Conformal symmetry Isometry of AdS = Isometry of X Global symmetry = R SC symmetry Reeb vector = central charge a 1 / Vol( X ) = ⋄ a is from a -maximization. How about Vol( X ) ? Many explicit metrics for X 5 : S 5 , T 1 , 1 , Y p,q and L p,q,r ⋄ [Gauntlett et al.], [Cvetiˇ c et al.] ⇒ Central charge a = (Vol) − 1 23/31

  30. Y p,q : explicit 5d Sasaki-Einstein metric found in 2004 ⋄ X 2 2 S S A B S 1 fibered over S 2 A × S 2 B ; S 2 ⋄ B squashed S 1 ‘winds’ p times on S 2 A and q times on S 2 ⋄ B 4 p 2 − 3 q 23 � − 1 � Vol( Y p,q ) = π 3 q 4 � − 8 p 3 + 9 pq 2 + p 2 24/31

  31. What to do without an explicit metric ? ⋄ ⋄ X 5 Sasaki-Einstein ⇒ C ( X ) : Calabi-Yau ⋄ X 5 Sasaki ⇒ C ( X ) : K¨ ahler Dilation along the cone r ∂ ⋄ and the complex structure J ∂r ⇒ the Reeb vector R = Jr ∂ : isometry of X 5 ∂r 25/31

  32. ⋄ Given C ( X ) as an complex manifold, find Einstein metric on X ⇒ HARD . • find the volume of Einstein metric ⇒ Tractable . • ⋄ The cone has isometries k 1 , 2 ,... : Isometry in X ⇒ gauge field in AdS ⇒ Global sym. in CFT Reeb vector R = s i k i ↔ R-sym. R = s I Q I ⋄ 26/31

  33. � √ g ( R − 12) ⋄ Let Z = X ⋄ Z = 8Vol( X ) if g is Sasaki Z : depends only on the Reeb vector , because ⋄ � � e − r 2 / 2 vol = e − H ω 3 Vol( X ) ∝ cone cone where H : the Hamiltonian for the Reeb vector ⇒ Apply Duistermaat-Heckman ! or, one can show explicitly show the integrand = total derivative Einstein metric extremizes Z ⇒ True s i extremizes Z ( s ) ! ⋄ 27/31

  34. a and Z Z ( s 1 , s 2 , s 3 ) Toric Sasaki-Einstein: Z = a ( s 1 , s 2 , s 3 , s 1 B , s 2 Field Theory: a = B , . . . ) a ( s ) cubic, Z ( s ) rational. ⋄ s 1 , 2 , 3 and s 1 , 2 ,... ⋄ correspond to B the mesonic and the baryonic , resp. a ( s ) is cubic in s 1 , 2 , 3 and quadratic in s 1 , 2 ,... ⋄ B Maximization in s 1 , 2 ,... is Linear ⋄ B ⇒ It can be done easily ⇒ a = a ( s 1 , s 2 , s 3 ) 28/31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend