thin film photovoltaics advances in earth abundant
play

Thin Film Photovoltaics: Advances in Earth Abundant Chalcogenide - PowerPoint PPT Presentation

Thin Film Photovoltaics: Advances in Earth Abundant Chalcogenide Technologies Paul Pistor 1 Victor Izquierdo-Roca 1 , Edgardo Saucedo 1 , Alejandro Prez-Rodrguez 1,2 IREC, Catalonia Institute for Energy Research, Barcelona, Spain 2IN2UB,


  1. Thin Film Photovoltaics: Advances in Earth Abundant Chalcogenide Technologies Paul Pistor 1 Victor Izquierdo-Roca 1 , Edgardo Saucedo 1 , Alejandro Pérez-Rodríguez 1,2 IREC, Catalonia Institute for Energy Research, Barcelona, Spain 2IN2UB, Departament d’Electrònica , Universitat de Barcelona, Barcelona, Spain e-mail: ppistor@irec.cat UNSW SPREE School Seminar, October 2016.

  2. 2. Objectives 1. Introduction 3. Experimental 4. Results 5. Conclusions Preface Martin-Luther University Halle-Wittenberg Paul Pistor has received funding from the European Union’s Seventh Framework Programme under reference number FP7-PEOPLE-2013-IEF- 625840 (“ JumpKEST ”)

  3. 2. SEMS at IREC Outline 1. Thin Film PV 4. Ge boost 5. Conclusions 3. CZTS solar cells OUTLINE 3 1. Thin Film Photovoltaics • PV Technologies(CIGS / CdTe/ a-Si) • Why Thin Film PV? • Technologies 2. The Solar Energy Materials and Systems group at IREC • Presentation of the group and institute • Main research lines • Examples 3. The kesterite solar cell • Standard process and device architecture • The absorber material • Challenges 4. Ge boosting CZTS cell efficiencies • Experimental – Ge layer optimization • Growth model and impact on crystal grains/grain boundaries • Bifacial crystallisation and Ge-Na interaction 5. Conclusions

  4. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Current PV Technologies 4 poly-crystalline mono-crystalline Rigid (Si-wafer) Wafer-based Si Cut out of blocks (ingots) Technology mature, long lifetimes amorphous Si CdTe Cu(In,Ga)(S,Se) 2 Deposition of thin films, choice of Thin Film PV substrate High cost reduction potential Low energy payback times OPV/DSSC/QD Perovskites Promising, but still Emerging PV immature technologies New materials and concept Efficiency or stability [3] not yet proven [2] [1]

  5. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions PV Technologies 5 Record lab Record lab Record Record Highest Highest Global Global Energy Energy cell cell module module commercial commercial production in production in payback payback efficiency efficiency efficiency efficiency 2014 + 2014 + module eff. module eff. time* time* 2016 2016 [GW p ] [GW p ] [years] [years] Silicon technology Silicon technology monocrystalline monocrystalline 25.6% 25.6% 22.8% a 22.8% a 21.5% a 21.5% a 16.9 (35.6%) 16.9 (35.6%) 4.1±2.0 4.1±2.0 multicrystalline multicrystalline 21.3% 21.3% 19.2%. b 19.2%. b 16.1% b ,16.2% c 16.1% b ,16.2% c 26.2 (55.2%) 26.2 (55.2%) 3.1±1.3 3.1±1.3 Thin film technology CdTe 22.1% 18.6% 16.4% d 1.9 (4.0%) 1.0±0.4 CIGS 22.6% 16.5% f 14.9% e 1.7 (3.6%) 1.7±0.7 a-Si 13.6% 10.9% 9.8% g 0.8 (1.6%) 2.3±0.7 Market share 2014 Thin film PV technology monocrystalline  Minimal use of high purity martial 35.6%  Low energy payback time thin film 9.2%  Extendable to flexible substrates multicrystalline 55.2%  Module price of 0.40 € /W p achievable although lower production capacity than Si Green, M. A.et al. Solar Cell Efficiency TablesProg. Photovolt. Res. Appl. 2016, 24 (1), 3 – 11. a Sunpower; b TrinaSolar; c SUNTECH; d FirstSolar; e Solibro; f TSMC (exited the solar industry in 2015); g Kaneka Solar Energy - Hybride between thin film mc-Si and a-Si; – status April 2016, + Fraunhofer ISE: Photovoltaics Report, updated: 11 March 2016 *Bhandari et al. 12 an insolation of 1700kWh/m 2 /year (corresponds to southern Europe) and 30 years of lifetime for the calculations.

  6. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Why Thin Film? 6 High aesthetic value  Design-driven projects  BIPV Solibro SL2 module (up to 16%) www.solibro-solar.com Integration of CIGS solar modules in a BIPV Linion-F CIGS module from Soltecture façade developed by Manz CIGS Technology (www.soltecture.com) (www.manz.com)

  7. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Why Thin Film? 7 Choice of substrate (low weight, flexible substrates)  Glass  Stainless steel  Aluminum  Polymers  Ceramics http://www.sunplugged.at Solé Power Tile by SRS Energy. Integration of CIGS flexible modules on metal roofs (http://sunplugged.at ) Uni-Solar photovoltaic sheet modules

  8. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Why Thin Film PV? 8 High cost reduction potential with low-cost technologies Wafer integration Monolithic integration 0.5 V V vs. V 0.5 -1 V Roll-to-Roll Processing  Low material consumption  Large area deposition  Monolithic integration  Possibly Roll-to-Roll production

  9. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Why Thin Film PV? 9 Flexibility of module size and shape – possibility to design of customised modules http://www.sunplugged.at/

  10. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Thin Film PV – Main Commercial Technologies 10 a-Si (superstrate) CdTe (superstrate) CIGS (substrate) • Low cost demonstrated • High efficiency • High efficiency • Earth abundant elements • Relatively low cost • Low cost has been • Instability • In an Ga are scarce demonstrated • Medium efficiencies • element Te is a scarce element demonstrated for multi- • • CZTSSe good alternative Cd is toxic and junction cells material contaminant

  11. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions SEMS at IREC 11 1. Thin Film Photovoltaics • PV Technologies(CIGS / CdTe/ a-Si) • Why Thin Film PV? • Technologies 2. The Solar Energy Materials and Sytems group at IREC • Presentation of the group and institute • Main research lines • Examples 3. The kesterite solar cell • Standard process and device architecture • The absorber material • Challenges 4. Ge boosting CZTS cell efficiencies • Experimental – Ge layer optimization • Growth model and impact on crystal grains/grain boundaries • Bifacial crystallisation and Ge-Na interaction 5. Conclusions 10

  12. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Catalonia Institute for Energy Research (IREC) Catalonia Institute for Energy Research 12 12 Founded in 2008, and located in Barcelona, Spain: Aim: “ ..to contribute to the objective of creating a more sustainable future for energy usage and consumption, keeping in mind the economic competitiveness and providing society with the maximum level of energy security …” Main activity: Research for Technology Development Six main areas: - Advanced materials for energy - Solar Energy Materials and systems - Lighting - Functional nanomaterials - Offshore wind energy - Materials and catalysts - Electrical engineering - Nanoionics and fuel cells - Energy storage and harvesting - Bioenergy and biofuels -Thermal energy and building performance

  13. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Solar Energy Materials and Systems (SEMS) Group 13 Group leader: Prof. Alejandro Pérez-Rodríguez Head of processes lab.: Dr. Edgardo Saucedo Head of characterization lab.: Dr. Victor Izquierdo-Roca - 6 Experienced researchers - 6 PhD Students • Haibing Xie (China council fellow) • Dr. Paul Pistor (Marie Curie) • Sergio Giraldo (FPI Sunbeam) • Dr. Marcel Placidi (Mineco PosDoc) • Laura Acebo (IREC fellow) • Dr. Mónica Colina (Flexart) • Ignacio Becerril (Ecoart) • Dr. Florián Oliva (Scalenano) • Laia Arqués (Novacost) • Dr. Moisés Espíndola (Novazolar) • Alejandro Hernández (FPI Nascent) • Dr. Markus Neuschitzer - 2 Laboratory Technicians • Dr. Diouldé Sylla (Electrochemistry and Safety) • Yudania Sánchez (Chemistry) 13

  14. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Solar Energy Materials and Systems 14 14 Main Research Lines Mo 4 Development of high efficiency kesterite devices: Engineering of the different Mo 2 and Mo 3 similar SEM device components for high effficiency kesterite thin film solar cells (Cu 2 ZnSnSe 4 , MoSe 2 Mo B Cu 2 ZnSnS 4 and Cu 2 ZnSn(S,Se) 4 500 nm Mo A New materials and device concepts: Cu- based chalcogenides, new absorber alloys, alternative buffer layers, alternative substrates, bifacial/semi-transparent concepts Advanced characterisation processes in thin film PV technologies: Development of techniques suitable for Quality Control & Process Monitoring (Raman spectroscopy, other light scattering based methods)

  15. 2. SEMS at IREC Outline 1. Thin Film PV 3. CZTS solar cells 4. Ge boost 5. Conclusions Process and Quality Control 15 Glass Washing Mo Sputter Scribe Wash Cu,In, Ga Deposition Reactive Annealing CBD Scribe ZnO Sputter Measure Encapsulation Scribe Picture adapted from Roland Scheer, Martin-Luther-University Halle

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend