thin film compression and can laser experimental results
play

Thin Film Compression and CAN Laser Experimental Results Jonathan - PowerPoint PPT Presentation

Thin Film Compression and CAN Laser Experimental Results Jonathan WHEELER cole polytechnique Palaiseau, France C oherent June 25 th , 2019 A mplifying N etwork Workshop on Beam Acceleration in Crystals and Nanostructures, Fermilab, June


  1. Thin Film Compression and CAN Laser Experimental Results Jonathan WHEELER École polytechnique Palaiseau, France C oherent June 25 th , 2019 A mplifying N etwork Workshop on Beam Acceleration in Crystals and Nanostructures, Fermilab, June 24-26, 2019

  2. Coherent Beam Combining of femtosecond fiber amplifiers: a path towards high peak and average power lasers J.-C. Chanteloup, A. Heilmann, L. Daniault, I. Fsaifes, S. Bellanger, A. Brignon, J. Bourderionnet, É. Durand, É. Lallier, C. Larat June 25 th , 2019 Workshop on Beam Acceleration in Crystals and Nanostructures, Fermilab, June 24-26, 2019

  3. General context What about a laser source combining both High peak Short pulses < ps (few fs) & average High repetition rate >10 kHz powers ? 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 3

  4. Peak Power: Chirped Pulse Amplification (CPA) Permits amplification of short pulses to high energy The Nobel Prize in Physics 2018 " for groundbreaking inventions in the field of laser physics “ Arthur Ashkin (Optical Tweezers) / Donna Strickland & Gerard Mourou (CPA) 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 4

  5. Peak Power: The CPA Plateau ? Intensity ~ Energy ____ (Time· Focal Spot) Focal Volume limit: Lambda – cubed Regime λ 3 = λ · λ 2 (Time · Focus) Two Options for continuing the ascent ! 1. Increase energy within volume: kJ ⇒ MJ 2. Decrease the wavelength and accessible volume: NIR NI ⇒ XUV UV ExaWatt Energy: 1 kJ 1 J 10 -15 s 10 -18 s Time: 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 5

  6. Wavelength Scaling of Peak Intensity Intensity ~ c · Pulse Energy_ λ 3 N · M 2 N ≡ Number of cycles M ≡ Number of wavelengths λ 3 limit (M, N) → 1 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 6

  7. Post-Compression Requirement Temporal compression ( i.e. 25 fs to 2.5 fs) Time (fs) From: Δλ ~ 50 nm For λ ~ 800 nm Must produce Δλ ~ 200 nm Wavelength (nm) 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 7

  8. Thin Film Compressor (NIR) Spectral broadening is produced by Self-Phase Modulation (SPM) 𝒐 ~ 𝒐 𝒑 + 𝒐 𝟑 ∙ 𝑱(𝒚, 𝒖) Self – Pha hase se Modul ulation on (t) 𝑱 (t) ω 𝒖 Gau aussia ian Beam am Prof ofile ile Gas-Filled Capillary To 𝒖𝒋𝒏𝒇 (t) Thin Film 𝜚 𝑂𝑀 𝑨 = 𝜕 0 𝑑 𝑜 2 ∙ 𝐽(𝒚, 𝑢) ∙ 𝑨 Fla lat-top 𝜖ω = 𝜖 𝜚 𝑂𝑀 ~ 𝑜 2 · 𝑨 · 𝜖 𝐽(𝒚, 𝑢) 𝜖𝑢 𝜖𝑢 ---- 𝑜 2 = NL Index of Ref. • G. Mourou, G. Cheriaux, C. Radier, Patent 2009 𝑨 = material thickness • A.A. Voronin, A.M. Zheltikov, T. Ditmire, B. Rus , G. Korn, Optics. Com ., 291 , 299 (2013). • Mourou G. et al. Eur. Phys. J. Spec. Top. 223 1181 – 8 (2014) • S. Y. Mironov, J. Wheeler, R. Gonin, G. Cojocaru, R. Ungureanu, R. Banici, M. Serbanescu, R. Dabu, G. Mourou, E. A. Khazanov , Quantum Electron ., 47 , 173 (2017). 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 8

  9. Applications X-ray Production: • Exawatt, Attosec. γ -Pulses ➢ TeV/cm WakeField Acceleration ➢ Short Lifetime Particles (Muon) ➢ QED Vacuum Physics ➢ Table Top Cosmos Laser-driven Acceleration: • Energy Enhancement • Improved Stability/Efficiency ➢ Neutron & Neutrino Sources ➢ Radio-isotope Production Single-Cycle NIR ➢ Nuclear Waste Treatment Direct Use: • Peak Power Enhancement • Beam Propagation • High Energy Plasma Probe 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 9

  10. Single-cycle NIR → Coherent X-rays Relativistic Oscillating Mirror (ROM) E_in τ p E_ph τ pulse ~ 600/a 0 [as] a 0 [J] [as] [eV] [w 0 ~4 μ m] 0.07 10 60 65 10 120 5 830 100 380 1.56 2600 a 0 = e E 0 (m e ω o c) -2 a 0 ~ 1 corresponds to 10 18 W/cm 2 250 600 1 4100 a 0 E_in N. M. Naumova, et al., Phys. Rev. Lett. 92, 063902-1 (2004). 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 10

  11. General context What about a laser source combining both High peak Short pulses < ps (few fs) & average High repetition rate >10 kHz powers ? 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 11

  12. Solid State laser gain medium geometry D Disks Rods h Aspects ratio (h/D) 0.01 0.1 1 10 100 1 000 10 000 Fibers Slabs 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 12

  13. Thermal management of solid state laser gain media Fibers Disk Slabs An ef effic ficie ient th thermal l management Cooling (i.e i.e. . gain in mediu ium heat rem emoval) l) fluid circulation is is favored by y a hig igh coole led su surface /v /volu lume ratio io Rods Abilit ility to work at t hig igh rep epetit itio ion rate 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 13

  14. But one fiber does not provide enough energy Ampli lify fy las laser puls lses through th a network of f fib fiber ampli lifie iers operated in in parall llel 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 14

  15. Laser pulse train coherent addition N fibers amplifier coherent addition principle Amplification Amplifier Dj Spatial separation Coherent Addition Amplification Amplifier Dj Amplifier N Channels Dj Amplifier Amplification Phase measurement ion Network ➔ CAN Coherent Ampli lific icatio 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 15

  16. Chirp Pulse Amplification N fibers amplifier coherent addition principle Amplification Amplifier Dj Spatial separation Coherent Addition Amplification Amplifier Dj Amplifier Compressor Oscillator Stretcher N Channels Dj Amplifier Amplification Phase measurement 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 16

  17. Several prototypes have been developed Active 7 channels prototype Pass assiv ive 19 channels ls pr prot ototype 61 cha hannels ls fi fina nal l pr prot ototype 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 17

  18. Objective Desig ignin ing, in integratin ing and operatin ing a 61 ch channels ls prototype ~ 300 fs ~ 3 mJ ~ 200 kHz 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 18

  19. Address key issues at the 61 channels scale… …and widening the application field XCAN is an IZEST project G.Mourou & T.Tajima 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19

  20. Synoptic view Oscillator Picker stretcher Pulse Shaper 100 mW @ 55 MHz 55 MHz → 8 MHz 200 fs → 5 ns (2 nJ), 200 fs x8 Pre-amp Picker Divider 8 MHz → 900 kHz → 100 mW 8x x8 Pre-amp Picker Divider → 100 mW 900 kHz → 200 kHz x61 61x (+ 3 empty channels) Phase & delay Pre-amp Power amp 5 mJ → 100 mW 125 µJ 7 GW 1 MW (peak) (peak) Compresseur 5 ns → 350 fs 5 mJ 3 mJ 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 20

  21. Phase control with two devices Amplification Coherent addition Dj Amplification Divider Dj Source Stretcher Amplification Compressor N channels Dj Amplification Fiber Stretcher (FS) Variable optical delay line j 1 2 l /V, linear j 2 Response time : 70 µs for 22 l j 3 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 21

  22. Phase measurement through interferometry Amplification Coherent addition Dj Amplification Divider Dj Source Stretcher Amplification Compressor N channels Dj Amplification 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 22

  23. Interferometric temporal synchronization Reference pulse Contrast monitoring Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 23

  24. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 24

  25. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 25

  26. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 26

  27. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 27

  28. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 28

  29. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 29

  30. Interferometric temporal synchronization Reference pulse <1kHz external perturbations ➔ Moving fringes Delay lines 1 2 3 Camera ➔ Phase locking with kHz feed back loop 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 30

  31. Interferometric temporal synchronization Reference pulse Delay lines Fiber stretchers j 1 1 j 2 2 j 3 3 Camera kHz Phase control 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 31

  32. 3 fibers co-phasing film P3 vitesse 2.5.avi 20 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST)

  33. Far field combination for max scalability Amplification Coherent addition Dj Amplification Divider Dj Source Stretcher Amplification Compressor N channels Dj Amplification Near field Far field µlens array power in main lobe of far field pattern Far field efficiency h FF = overall power in far field 21 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend