damping of magnetization dynamics
play

Damping of magnetization dynamics Andrei Kirilyuk Radboud - PowerPoint PPT Presentation

Damping of magnetization dynamics Andrei Kirilyuk Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 ESM Cluj-Napoca - August 2015 2 ESM Cluj-Napoca - August 2015 Landau-Lifshitz equation energy


  1. Damping of magnetization dynamics Andrei Kirilyuk � Radboud University, Institute for Molecules and Materials, 
 Nijmegen, The Netherlands 1 ESM Cluj-Napoca - August 2015

  2. 2 ESM Cluj-Napoca - August 2015

  3. Landau-Lifshitz equation energy gain: H eff � N torque equation: S Landau & Lifshitz, 1935 3 ESM Cluj-Napoca - August 2015

  4. Landau-Lifshitz equation energy gain: H eff � N torque equation: S Landau & Lifshitz, 1935 3 ESM Cluj-Napoca - August 2015

  5. Damping: Landau-Lifshitz vs Gilbert 4 ESM Cluj-Napoca - August 2015

  6. Damping: Landau-Lifshitz vs Gilbert 4 ESM Cluj-Napoca - August 2015

  7. Damping: Landau-Lifshitz vs Gilbert Landau-Lifshitz vs Gilbert 4 ESM Cluj-Napoca - August 2015

  8. Damping: Landau-Lifshitz vs Gilbert Landau-Lifshitz vs Gilbert Since the second result is in agreement with the fact that a very large damping should produce a very slow motion while the first is not, one may conclude that the Landau-Lifshitz-Gilbert equation is more appropriate to describe magnetization dynamics. 4 ESM Cluj-Napoca - August 2015

  9. To remember: magnetization = angular momentum Einstein – de Haas & Barnett effects A. Einstein & W.J. de Haas, Experimenteller Nachweis der Amperèschen 
 Molekülströme, Verhandl. Deut. Phys. Ges. 17 , 152 (1915) S.J. Barnett, Magnetization by rotation , Phys. Rev. 6 , 239 (1915) 5 ESM Cluj-Napoca - August 2015

  10. Angular momentum transfer and two ways of reversal usual (practical) precessional (fast) ! ! M M ! H ! H dM dM dM dM α α & # & # ( ) ( ) eff eff M H M M H M = − γ × + × = − γ × + × $ ! $ ! dt M dt dt M dt % " % " from spins to field 6 ESM Cluj-Napoca - August 2015

  11. Angular momentum transfer and two ways of reversal usual (practical) precessional (fast) ! ! M M ! H ! H dM dM dM dM α α & # & # ( ) ( ) eff eff M H M M H M = − γ × + × = − γ × + × $ ! $ ! dt M dt dt M dt % " % " from spins to field from spins to lattice 6 ESM Cluj-Napoca - August 2015

  12. Angular momentum transfer and two ways of reversal usual (practical) precessional (fast) ! ! M M ! H ! H dM dM dM dM α α & # & # ( ) ( ) eff eff M H M M H M = − γ × + × = − γ × + × $ ! $ ! dt M dt dt M dt % " % " from spins to field from spins to lattice 6 ESM Cluj-Napoca - August 2015

  13. measuring the damping 7 ESM Cluj-Napoca - August 2015

  14. measuring the damping 7 ESM Cluj-Napoca - August 2015

  15. Example 1: thin film configuration from the condition that the net torque on M is zero: 8 ESM Cluj-Napoca - August 2015

  16. FMR resonance 9 ESM Cluj-Napoca - August 2015

  17. FMR resonance 9 ESM Cluj-Napoca - August 2015

  18. FMR resonance 9 ESM Cluj-Napoca - August 2015

  19. FMR versus applied field angle isotropic out of plane easy axis easy plane 10 ESM Cluj-Napoca - August 2015

  20. FMR linewidth 11 ESM Cluj-Napoca - August 2015

  21. FMR linewidth 11 ESM Cluj-Napoca - August 2015

  22. Example 2: optical pump-probe measurement Damping in a Bi:YIG garnet film as a function of temperature pump probe 12 ESM Cluj-Napoca - August 2015

  23. Example 2: optical pump-probe measurement Damping in a Bi:YIG 370 K garnet film as a function 380 K of temperature 390 K Faraday rotation 395 K pump 400 K probe 405 K 410 K 415 K T C 420 K 0 200 400 600 800 1000 1200 1400 Delay time (ps) 12 ESM Cluj-Napoca - August 2015

  24. Energy flow via spin waves?? 13 ESM Cluj-Napoca - August 2015

  25. Semi-quantitative analysis 14 ESM Cluj-Napoca - August 2015

  26. Semi-quantitative analysis radius laser spot ~20 µ m; km v 100 ⇒ > s observed τ < 200 ps; 14 ESM Cluj-Napoca - August 2015

  27. Semi-quantitative analysis radius laser spot ~20 µ m; km v 100 ⇒ > s observed τ < 200 ps; ω k 14 ESM Cluj-Napoca - August 2015

  28. Semi-quantitative analysis radius laser spot ~20 µ m; km v 100 ⇒ > s observed τ < 200 ps; ω d ω v g = dk 0 ≈ k 14 ESM Cluj-Napoca - August 2015

  29. Semi-quantitative analysis radius laser spot ~20 µ m; km v 100 ⇒ > s observed τ < 200 ps; ω d ω v g = dk 0 ≈ k Magnetostatic modes; picture from Demokritov & Hillebrands 14 ESM Cluj-Napoca - August 2015

  30. Semi-quantitative analysis radius laser spot ~20 µ m; km v 100 ⇒ > s observed τ < 200 ps; ω d ω v g = dk 0 ≈ k Magnetostatic modes; picture from km Demokritov & Hillebrands v g 10 ≤ s 14 ESM Cluj-Napoca - August 2015

  31. µ -magnetic simulations [Eilers et al, PRB 74, 054411 (2006)] 0 . 4 m µ km v 6 ≈ ≈ s 70 ps 15 ESM Cluj-Napoca - August 2015

  32. Experiment: propagation of spin waves ! H J 0.5 ns, 40 Oe pulse part with T. Korn & U. Ebels, SPINTEC, Grenoble 16 ESM Cluj-Napoca - August 2015

  33. Experiment: propagation of spin waves ! H J 0.5 ns, 40 Oe pulse part with T. Korn & U. Ebels, SPINTEC, Grenoble 16 ESM Cluj-Napoca - August 2015

  34. Experiment: propagation of spin waves ! H J 0.5 ns, 40 Oe pulse 500 m µ part with T. Korn & U. Ebels, km v 140 ≈ ≈ SPINTEC, Grenoble s 3 . 5 ns 16 ESM Cluj-Napoca - August 2015

  35. Conclusion 1 � not everything what you measure is damping! 17 ESM Cluj-Napoca - August 2015

  36. Damping channels: intrinsic vs extrinsic 18 ESM Cluj-Napoca - August 2015

  37. damping via magnetoelastic interactions breathing Fermi-surface in metals extrinsic: two-magnon scattering 19 ESM Cluj-Napoca - August 2015

  38. damping via magnetoelastic interactions breathing Fermi-surface in metals extrinsic: two-magnon scattering 19 ESM Cluj-Napoca - August 2015

  39. Phenomenology based on magneto-elasticity 20 ESM Cluj-Napoca - August 2015

  40. ‘Dissipative’ part of magnetic field 21 ESM Cluj-Napoca - August 2015

  41. ‘Dissipative’ part of magnetic field so that the total effective field is 21 ESM Cluj-Napoca - August 2015

  42. Heating rate 22 ESM Cluj-Napoca - August 2015

  43. Heating rate 22 ESM Cluj-Napoca - August 2015

  44. Heating rate 22 ESM Cluj-Napoca - August 2015

  45. Magnetostriction the adiabatic magnetostriction coefficients are defined as 23 ESM Cluj-Napoca - August 2015

  46. Magnetostriction the adiabatic magnetostriction coefficients are defined as the time-varying magnetostrictive strain is then 23 ESM Cluj-Napoca - August 2015

  47. Finally: the Gilbert damping tensor thus, a changing M produce a changing strain; the crystal viscosity tensor determines the heating rate per unit volume 24 ESM Cluj-Napoca - August 2015

  48. Finally: the Gilbert damping tensor thus, a changing M produce a changing strain; the crystal viscosity tensor determines the heating rate per unit volume 24 ESM Cluj-Napoca - August 2015

  49. Finally: the Gilbert damping tensor thus, a changing M produce a changing strain; the crystal viscosity tensor determines the heating rate per unit volume from this, the Gilbert damping tensor is rigorously given by 24 ESM Cluj-Napoca - August 2015

  50. Experiments vs theory 25 ESM Cluj-Napoca - August 2015

  51. Experiments vs theory the theoretical prediction is that 25 ESM Cluj-Napoca - August 2015

  52. Theoretical vs measured damping parameters 26 ESM Cluj-Napoca - August 2015

  53. Theoretical vs measured damping parameters 27 ESM Cluj-Napoca - August 2015

  54. damping via magnetoelastic interactions breathing Fermi-surface in metals extrinsic: two-magnon scattering 28 ESM Cluj-Napoca - August 2015

  55. damping via magnetoelastic interactions breathing Fermi-surface in metals extrinsic: two-magnon scattering 28 ESM Cluj-Napoca - August 2015

  56. Ferromagnetism of metals 29 ESM Cluj-Napoca - August 2015

  57. ‘breathing’ Fermi-surface following Steiauf and Fähnle, PRB 72 , 0064450 (2005); see Kambersky, Can J. Phys. 48 , 2906 (1970); Kunes and Kambersky, PRB 65 , 212411 (2002) 30 ESM Cluj-Napoca - August 2015

  58. 1. Adiabatic regime we confine the treatment to the adiabatic regime: several ps to nanoseconds (single-electron spin fluctuations can be integrated out): 31 ESM Cluj-Napoca - August 2015

  59. 2. Dissipative free-energy functional the existence of such functional is postulated: 32 ESM Cluj-Napoca - August 2015

  60. 2. Dissipative free-energy functional the existence of such functional is postulated: 32 ESM Cluj-Napoca - August 2015

  61. 3. Translate this to the electronic level as outputted from the density functional theory 33 ESM Cluj-Napoca - August 2015

  62. 3. Translate this to the electronic level as outputted from the density functional theory 33 ESM Cluj-Napoca - August 2015

  63. 3. Translate this to the electronic level as outputted from the density functional theory as the total number of states is conserved 33 ESM Cluj-Napoca - August 2015

  64. 3. Translate this to the electronic level as outputted from the density functional theory as the total number of states is conserved 33 ESM Cluj-Napoca - August 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend