thermal expansion and magnetostriction measurements of
play

Thermal expansion and magnetostriction measurements of CeCu 6- x Au x - PowerPoint PPT Presentation

Thermal expansion and magnetostriction measurements of CeCu 6- x Au x single crystals S S and T T C M S ( T, ) , , , ... , V V T T T T specific heat thermal expansion,


  1. Thermal expansion and magnetostriction measurements of CeCu 6- x Au x single crystals ∂ ∂ S S and ∂ ∂ ∂ δ ∂ δ T T C ∂ M S ( T, δ ) , , , ... , α V V T T ∂ ∂ T T specific heat thermal expansion, magnetocaloric effect, g , competing ... ground states CeCu 6- x Au x : C C A T control parameter δ = p QCP δ δ c ∂ ∂ ∂ ∂ S S V V ⇒ δ = − = ⋅ α V m V ∂ p ∂ T accumulation of entropy S ~ degrees of freedom

  2. Thermal expansion and magnetostriction measurements of CeCu 6- x Au x single crystals Different scenarios: traditional “itinerant” scenario “local” scenario ... T T T Kondo lattice T N T N T Kondo lattice FL FL ? J ~ V ( p , x ) J ~ V ( p , x ) ∂ S = α V ∂ p and scaling behavior and scaling behavior Coleman, Si et al.. Hertz, Millis, Moiya et al.

  3. Outline Stefanie Drobnik 1 , Frédéric Hardy 1 , Kai Grube 1 , Roland Schäfer 1 , Peter Schweiss 1 , Oliver Stockert 2 , Thomas Wolf, Christoph Meingast 1 , and Hilbert v. Löhneysen 1 1 IFP Forschungszentrum Karlsruhe, PI Universität Karlsruhe, KIT, Germany 2 MPI für chemische Physik fester Stoffe, Dresden, Germany Introduction: Thermal expansion at a QCP Experimental details: dilatometer CeCu 6- x Au x : control parameter x and p Measurements: Thermal expansion: volume, lattice parameter (compressibility, magnetostriction) Summary and outlook Summary and outlook

  4. Thermal expansion at a quantum critical point Fermi liquid for T → 0: α V / T → ∂γ / ∂ p = constant T classical fluctuations ordered NFL NFL phase dS = 0 ∂ S 0 0 p < < FL FL ∂ QCP α crit / T p |α NFL / T| ∂ ∂ S S 0 > ∂ p FL NFL L. Zhu et al. PRL 91, 066404 (2003) M. Garst et al. PRB 72, 205129 (2005) T P. Gegenwart et al. PRL 96, 136402 (2006) M. Garst et al. : cond-mat 0808.0616

  5. Experimental details Capacitance dilatometer: Capacitance dilatometer: thermal expansion & magnetostriction a) 40 mK < T < 10 K, µ 0 H < 14 T m 20 mm b) 1 5 K < T < 300 K µ H < 10 T b) 1.5 K < T < 300 K, µ 0 H < 10 T rotatable in H ∆ L > 0.01 Å, ∆ L / L 10 -9 plate capacitor sample mm 5 m c) Miniature dilatometer built in a He gas pressure cell: a He-gas pressure cell: compressibility measurements 10 K < T < 325 K, p < 8 kbar ∆ L > 0.1 Å, ∆ L / L 10 -8 Å

  6. CeCu 6- x Au x : control parameter x and p For x < 1.0: 1.6 T N x = 0 5 0.5 T N 2.0 2 0 x N N (K) (K) 1.4 1.5 1.2 1.0 1.0 0.5 0.8 AF AF AF AF 0.6 0.0 0.0 0.5 1.0 0.0 0.5 1.0 p (GPa) p ( ) x V V Comparison between the control parameters x and p

  7. CeCu 6- x Au x : control parameter gold content x x Cu(2) → Au ( ) 0 0 0.0 0 5 0.5 1 0 1.0 1.5 1 5 445 440 Ce V 435 (Å) Å 430 Cu 425 Cu(2) Cu(4) 420 b c a 8.3 5.12 a,b,c ( x ) 10.4 c (Å) ( ) 8.2 5.10 5 10 10.2 a orthorhombic 8.1 5.08 b Pnma structure 0 1 0 1 0 1 (Å) (Å) (Å) x x x residual resistivity y For x < 1 0 For x < 1.0 • strongly anisotropic distortion of the lattice • introduction of disorder x

  8. CeCu 6- x Au x : hydrostatic pressure p x Au 1.000 1.000 T = 300 K x = 0 a / a 0 Ce b / b b / b 0 Cu c / c 0 1.000 0.999 V / V 0 0.998 c 0.0 0.1 0.2 0.3 a orthorhombic 0.0 0.1 0.2 0.3 b Pnma structure p (GPa) If V ( x ) = V ( p ): usually a ( x ) ≠ a ( p ), b ( x ) ≠ b ( p ), c ( x ) ≠ c ( p ) and ρ 0 ( V ( x )) ≠ ρ 0 ( V ( p )).

  9. Comparison of x and p At the QCP, CeCu 6- x M x (M = Au, Pd, Pt) C p / T show the identical NFL behavior (J/molK 2 ) but differ: • • in their lattice parameters in their lattice parameters • and the amount of disorder T N AF x x T (K) ⇒ for x ≤ 0.3: doping with Au = chemical pressure ~ applying negative hydrostatic pressure ⇓ control parameter: volume V control parameter: volume V

  10. Thermal expansion of CeCu 6- x Au x Ce(4f 1 )Cu 5.85 Au 0.15 50 α V (10 -6 K -1 ) Grüneisen ratio: 40 1 * 1 ∂ θ α ∂ E 30 30 Debye Debye Γ Γ = V V ≈ → p * ∂ θ ∂ C E p p La(4f 0 )Cu 6 p Debye 20 C p 10 150 (J/molK) 0 0 100 100 0 50 100 150 200 250 300 T (K) 50 typical for HF systems: 0 0 50 100 150 200 250 300 T (K) large 4(5)f contribution to the thermal expansion g ( ) p

  11. Thermal expansion: 4f contribution 4f 1 contribution to α V = α V (Ce(4f 1 )Cu 5 85 Au 0 15 ) - α V (La(4f 0 )Cu 6 ) 4f contribution to α V α V (Ce(4f )Cu 5.85 Au 0.15 ) α V (La(4f )Cu 6 ) 15 α V (4f) (10 -6 K -1 ) (10 6 K 1 ) 10 T N 4f 1 contribution to C p 5 5 T N T N C p (4f) 4 (J/molK) AF 0 0 3 0.1 1 10 100 x 2 T (K) T N 1 AF order Kondo lattice CEF 0 0.1 1 10 100 ∆ CEF (meV) T (K) 0 – 7 – 13.8

  12. Linear thermal expansion coefficients α i α V = α a + α b + α c α = α + α + α α i ~ - ∂ S / ∂σ i i = a , b , c 12 α a , b , c 10 10 (10 -6 K -1 ) uniaxial pressure 8 c in i direction 6 6 4 b 1 2 b,c α a,b 0 0 -2 a 0.05 T (K) T (K) 0.1 1 10 100 T (K) Anisotropy of changes α i d depending which characteristic di hi h h t i ti AF order Kondo lattice CEF energy scale dominates. ∆ CEF (meV) 0 – 7 – 13.8

  13. Non-Fermi liquid behavior Fermi liquid for T → 0: q C / T → γ = constant α V / T → ∂γ / ∂ p = constant C p / T C / T 60 60 α V / T x = 0.15 4 x = 0.1 (J/ mol K 2 ) (10 -6 K -2 ) x = 0.5 x = 0.3 x = 0.15 40 3 3 x = 0.1 0 1 20 2 x = 0.0 x = 0.0 x = 0.3 T N 0 1 x = 0.5 0.5 x AF AF 0 -20 0.1 1 0.1 1 4 x T (K) T (K) T (K) T (K) Non-Fermi liquid behavior next to the onset of AF order. thermal expansion measurements for x = 0, 0.3, 0.5 from A. de Visser et al.

  14. Grüneisen parameter Γ V of CeCu 6- x Au x If the system is dominated by a characteristic energy scale E * If the system is dominated by a characteristic energy scale E * Γ V reveals the (normalized) volume dependence of E *. 140 * * α V V ∂ ∂ E E Γ V x c =0.1 V 120 Γ = V B C ≈ * V mol T E ∂ V p 100 x = 0.0 80 bulk modulus measured at T = 10 K 60 x = 0.15 40 40 Γ → ∞ ⇒ * 0 → E 20 T N V x = 0.3 0 AF AF x = 0.5 -20 0.01 0.1 1 10 x T (K) T (K) The non-Fermi liquid behavior is caused by a QCP.

  15. Non-Fermi liquid behavior Fermi liquid for T → 0: q C / T → γ = constant α V / T → ∂γ / ∂ p = constant C p / T C / T 60 60 α V / T x = 0.15 4 x = 0.1 (J/ mol K 2 ) (10 -6 K -2 ) x = 0.5 x = 0.3 x = 0.15 40 3 3 x = 0.1 0 1 20 2 x = 0.0 x = 0.0 x = 0.3 T N 0 1 x = 0.5 0.5 x AF AF 0 -20 0.1 1 0.1 1 4 x T (K) T (K) T (K) T (K) Non-Fermi liquid behavior next to the onset of AF order. thermal expansion measurements for x = 0, 0.3, 0.5 from A. de Visser et al.

  16. Comparison with the specific heat C / T ( V , T = 0.1K) C p ( V , T = const. → 0) tracks the maximum of S at the QPC. S p p x 0.0 0.5 1.0 4 x , p = 0 T = 0.1K T x = 0 0 p > 0 0.0, p > 0 x V c 3 x = 0.1, p > 0 V C p /T x = 0.2, p > 0 (J/mol K 2 ) x = 0.3, p > 0 2 2 x = 0.0, α V x = 0.1, α V T N 1 1 x = 0 15 α x = 0.15, α V N x = 0.3, α V AF 0 412 412 416 416 420 420 424 424 428 428 x V (Å 3 ) ln( / ) for ∂ C T α p 0 V Γ = ≈ T → ∂ C p p p p

  17. Sign change of the thermal expansion S x = 0.1 p p x 0.0 0.5 1.0 4 T = 0.1K ~ 1/ T coh T V c coherence temperature from 3 V C p /T resistivity measurements (J/mol K 2 ) 2 2 ρ T N 1 1 N AF T 0 412 412 416 416 420 420 424 424 428 428 x T coh ( T Kondo ) V (Å 3 ) dominated b the Kondo lattice state dominated by the Kondo-lattice state

  18. Sign change of the thermal expansion Expected behavior next to the QCP: 60 α V / T x = 0.1 T < T N T > T N (10 -6 K -2 ) x = 0.15 40 − α V ( x < x c ) ≈ α V ( x > x c ) α ( x < x ) ≈ α ( x > x ) x = 0.3 20 x = 0.5 • no sign change of α V 0 at T N ( x = 0.15) -20 ⇒ S maximum not at x = 0.1 -40 • with decreasing x and T with decreasing x and T increasing "background" -60 0.1 1 4 ⇒ di disorder ? d ? T (K) 40 ⇒ additional QCP ? x = 0.15 -6 K -2 ) 30 α V / T (10 - 20 10 0 0 0.1 1 10 thermal expansion measurements for x = 0, 0.3, T (K) 0.5 from A. de Visser et al.

  19. Disorder ? possible ibl α V / T - background 0 0 0.0 0 5 0.5 1 0 1.0 x For x < 0.3 all samples show: C ( x ) ≈ C ( p ) S Sample with the largest l ith th l t ⇒ no "background" visible chemical disorder p x 0.0 0.5 1.0 4 T = 0.1K 3 C p /T (J/mol K 2 ) 2 1 0 0 412 416 420 424 428 V (Å 3 )

  20. Linear thermal expansion coefficients α a,b,c ( T > 10K) x = 0 x = 0.1 x = 0.15 x = 0.3 x = 1.0 α a,b,c (4f) 10 (10 -6 K -2 ) c (10 6 K 2 ) c c c c c c 5 a a a a a a a 0 a c c c c -5 5 ∆ CEF (meV) ( V) ∆ c 0 – 7 – 13.8 0 – 8.6 – 13.8 10 100 10 100 10 100 10 100 10 100 T (K) T (K) T (K) T (K) T (K) T (K) T (K) T (K) T (K) T (K) Cu Distortion of the lattice due to CEF splitting of the 4f state. T c c Ce b ∆ CEF from Stroka et al. b

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend