the story of the film so far
play

The story of the film so far... X , Y independent random variables - PowerPoint PPT Presentation

The story of the film so far... X , Y independent random variables and Z = X + Y : f Z = f X f Y , where is the convolution Mathematics for Informatics 4a X , Y with joint density f ( x , y ) and Z = g ( X , Y ) : E ( Z ) = g ( x , y )


  1. The story of the film so far... X , Y independent random variables and Z = X + Y : f Z = f X ⋆ f Y , where ⋆ is the convolution Mathematics for Informatics 4a X , Y with joint density f ( x , y ) and Z = g ( X , Y ) : � E ( Z ) = g ( x , y ) f ( x , y ) dx dy Jos´ e Figueroa-O’Farrill X , Y independent: E ( XY ) = E ( X ) E ( Y ) Var ( X + Y ) = Var ( X ) + Var ( Y ) M X + Y ( t ) = M X ( t ) M Y ( t ) , where M X ( t ) = E ( e tX ) We defined covariance and correlation of two r.v.s Proved Markov’s and Chebyshev’s inequalities Lecture 14 9 March 2012 Proved the (weak) law of large numbers and the Chernoff bound Waiting times of Poisson processes are exponentially distributed Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 1 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 2 / 23 More approximations 0.25 0.35 0.30 0.20 In Lecture 7 we saw that the binomial distribution with 0.25 0.15 0.20 parameters n , p can be approximated by a Poisson distribution 0.15 0.10 with parameter λ in the limit as n → ∞ , p → 0 but np → λ : 0.10 0.05 0.05 p k ( 1 − p ) n − k ∼ e − λ λ k � n � k k ! n = 5 n = 10 But what about if n → ∞ but p �→ 0 ? 0.10 For example, consider flipping a fair coin n times and let X 0.15 denote the discrete random variable which counts the number 0.08 0.10 of heads. Then 0.06 � 1 � n 0.04 P ( X = k ) = 0.05 2 n k 0.02 Lectures 6 and 7: this distribution has µ = n/ 2 and σ 2 = n/ 4. n = 20 n = 50 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 3 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 4 / 23

  2. Normal limit of (symmetric) binomial distribution Proof Theorem Let k = n 2 + x . Then Let X be binomial with parameter n and p = 1 2 . Then for n large n !2 − n � n � � n � 2 − n = 2 − n = and k − n/ 2 not too large, � n � n n � ! � ! k 2 + x 2 + x 2 − x � 1 � n � n � 1 2 n � n e −( k − µ ) 2 / 2 σ 2 = n !2 − n � � 2 − 1 · · · 2 − ( x − 1 ) nπe − 2 ( k − n/ 2 ) 2 /n √ 2 2 n ≃ = � ! × � n � n � n � � n � n k 2 πσ � ! � � 2 + 1 2 + 2 2 + x · · · 2 2 � � n � � � � x for µ = n/ 2 and σ 2 = n/ 4 . 1 − 2 1 − ( x − 1 ) 2 1 � · · · 2 n n 2 ≃ nπ × � � n � � � � � � x 1 + 2 1 + 2 2 1 + x 2 · · · The proof rests on the de Moivre/Stirling formula for the factorial n n n 2 of a large number: Now we use the exponential approximation √ 2 πn n √ ne − n n ! ≃ 1 1 − z ≃ e − z 1 + z ≃ e − z and which implies that � n � � n ! 2 ( n/ 2 ) ! ( n/ 2 ) ! ≃ 2 n = (valid for z small) to rewrite the big fraction in the RHS. n/ 2 πn Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 5 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 6 / 23 Proof – continued. Example (Rolling a die ad nauseam ) It’s raining outside, you are bored and you roll a fair die 12000 � � n � 2 � − 4 n − 8 n − · · · − 2 ( x − 1 ) − 2 x � times. Let X be the number of sixes. What is 2 − n ≃ nπ exp P ( 1900 < X < 2200 ) ? k n n The variable X is the sum X 1 + · · · + X 12000 , where X i is the � 2 � − 4 n ( 1 + 2 + · · · + ( x − 1 )) − 2 x � nπ exp = number of sixes on the i th roll. This means that X is binomially n distributed with parameter n = 12000 and p = 1 6 , so � 2 � − 4 x ( x − 1 ) − 2 x � µ = pn = 2000 and σ 2 = np ( 1 − p ) = 5000 3 . = nπ exp √ √ 2 n n X ∈ ( 1900, 2200 ) iff X − 2000 ∈ (− 6, 2 6 ) , whence σ � 2 nπe − 2 x 2 /n √ √ = P ( 1900 < X < 2200 ) ≃ Φ ( 2 6 ) − Φ (− 6 ) ≃ 0.992847 which is indeed a normal distribution with σ 2 = n 4 . The exact result is 2199 A similar proof shows that the general binomial distribution with � 12000 � � � 12000 − k � � k � 1 5 µ = np and σ 2 = np ( 1 − p ) is also approximated by a normal ≃ 0.992877 6 6 k distribution with the same µ and σ 2 . k = 1901 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 7 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 8 / 23

  3. Normal limit of Poisson distribution We have just shown that in certain limits of the defining parameters, two discrete probability distributions tend to normal distributions: 0.12 the binomial distribution in the limit n → ∞ , 0.15 0.10 the Poisson distribution in the limit λ → ∞ 0.08 0.10 0.06 What about continuous probability distributions? 0.04 0.05 We could try with the uniform or exponential distributions: 0.02 λ = 5 λ = 10 1.0 4 0.8 3 0.6 0.08 0.05 2 0.4 0.04 0.06 1 0.2 0.03 0.04 0.02 � 1 1 2 3 4 0.5 1.0 1.5 2.0 2.5 3.0 0.02 No amount of rescaling is going to work. Why? 0.01 λ = 20 λ = 50 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 9 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 10 / 23 The binomial and Poisson distributions have the following Sum of uniformly distributed variables property: X i i.i.d. uniformly distributed on [ 0, 1 ] : then X 1 + · · · + X n is if X , Y are binomially distributed with parameters ( n , p ) and ( m , p ) , X + Y is binomially distributed with parameter 1.4 1.0 ( n + m , p ) 1.2 0.8 1.0 if X , Y are Poisson distributed with parameters λ and µ , 0.6 0.8 X + Y is Poisson distributed with parameter λ + µ 0.6 0.4 0.4 It follows that if X 1 , X 2 , . . . are i.i.d. with binomial 0.2 0.2 distribution with parameters ( m , p ) , X 1 + · · · + X n is � 1 1 2 3 � 1.0 � 0.5 0.5 1.0 1.5 2.0 binomial with parameter ( nm , p ) . Therefore m large is n = 1 n = 2 equivalent to adding many of the X i . It also follows that if X 1 , X 2 , . . . are i.i.d. with Poisson 0.7 0.8 0.6 distribution with parameter λ , X 1 + · · · + X n is Poisson 0.6 0.5 distributed with parameter nλ and again λ large is 0.4 0.4 equivalent to adding a large number of the X i . 0.3 0.2 0.2 The situation with the uniform and exponential distributions 0.1 � 1 1 2 3 4 � 1 1 2 3 4 5 is different. n = 3 n = 4 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 11 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 12 / 23

  4. Sum of exponentially distributed variables 0.12 If X i are i.i.d. exponentially distributed with parameter λ , we 0.15 0.10 already saw that Z 2 = X 1 + X 2 has a “gamma” probability 0.08 density function: 0.10 0.06 f Z 2 ( z ) = λ 2 ze − λz 0.04 0.05 0.02 2 4 6 8 10 5 10 15 20 It is not hard to show that Z n = X 1 + · · · + X n has probability n = 5 n = 10 density function z n − 1 f Z n ( z ) = λ n ( n − 1 ) ! e − λz 0.08 0.04 0.06 0.03 0.04 0.02 What happens when we take n large? 0.02 0.01 10 20 30 40 20 40 60 80 100 120 140 n = 20 n = 75 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 13 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 14 / 23 The Central Limit Theorem Our 4-line proof of the CLT rests on L´ evy’s continuity law , which we will not prove. Let X 1 , X 2 , . . . be i.i.d. random variables with mean µ and Paraphrasing: “the m.g.f. determines the c.d.f.” variance σ 2 . It is then enough to show that the limit n → ∞ of the m.g.f. Let Z n = X 1 + · · · + X n . of Z n − nµ is the m.g.f. of the standard normal distribution. Then Z n has mean nµ and variance nσ 2 , but in addition we √ nσ have Proof of CLT. Theorem (Central Limit Theorem) We shift the mean: the variables Y i = X i − µ are i.i.d. with mean 0 and variance σ 2 , and Z n − nµ = Y 1 + · · · + Y n . In the limit as n → ∞ , M Z n − nµ ( t ) = M Y 1 ( t ) · · · M Y n ( t ) = M Y 1 ( t ) n , by i.i.d. � Z n − nµ � √ nσ � n P � x → Φ ( x ) � � � t t M Zn − nµ √ nσ ( t ) = M Z n − nµ = M Y 1 √ nσ √ nσ � n � 1 + σ 2 t 2 → e t 2 / 2 , which is the m.g.f. with Φ the c.d.f. of the standard normal distribution. M Zn − nµ √ nσ ( t ) = 2 nσ 2 + · · · of a standard normal variable. In other words, for n large, Z n is normally distributed. Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 15 / 23 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 14 16 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend