the sl 2 sector of at
play

The SL(2) sector of at strong coupling Ivan Kostov IPhT-Saclay - PowerPoint PPT Presentation

The SL(2) sector of at strong coupling Ivan Kostov IPhT-Saclay with Didina Serban and Dmytro Volin arXiv:hep-th/0703031, arXiv:0801.2542 GGI, Florence, 30 November 2008 The sl (2) sector of PSU (2,2|4) Excitations in the sl(2) sector: Lorentz


  1. The SL(2) sector of at strong coupling Ivan Kostov IPhT-Saclay with Didina Serban and Dmytro Volin arXiv:hep-th/0703031, arXiv:0801.2542 GGI, Florence, 30 November 2008

  2. The sl (2) sector of PSU (2,2|4) Excitations in the sl(2) sector: Lorentz spin Twist C lassical folded Gubser- strings propagating Klebanov- D M + Z L � � in AdS 3 x S 1 tr + . . . Polyakov’02 Bethe Ansatz equations: At one loop: [XXX] - ½ spin chain � 2 � � � � L M k − u + 1 − 1 /x + u − k x − � x + � Dressing phase j j e 2 i θ ( u k ,u j ) k = x − u + k − u − 1 − 1 /x − k x + j j k j � = k g 2 = g 2 YM N � ≡ 1 u ± = u ± i � , x ± = x ( u ± ) 16 π 2 . 4 g, u u ( x ) ≡ 1 � x + 1 � 2 x Large M limit: � � � 1 − 1 (BES) Beisert-Eden-Staudacher’06 ( L finite ) , x ( u ) = u 1 + u 2 Freyhult-Rej-Staudacher’07 (FRS) ( L~ Log M )

  3. ∆ = M + L + f ( g, L ) ln M + . . . Anomalous dimension for large M : universal scaling function Korchemsky’89; = cusp anomalous dimension GKP’02

  4. ∆ = M + L + f ( g, L ) ln M + . . . Anomalous dimension for large M : universal scaling function Korchemsky’89; = cusp anomalous dimension GKP’02 Provides a critical test of AdS/CFT: � 73 � f ( g ) = 8 g 2 − 8 3 π 2 g 4 + 88 630 π 6 + 4 ζ (3) 2 Weak coupling g 8 ± . . . . 45 π 4 g 6 − 16 expansion: From perturbative 3-loop guess SYM up to g 8 4-loop result [Moch, Vermasseren, Vogt’04; Lipatov at al’04] [Bern et al’06]

  5. ∆ = M + L + f ( g, L ) ln M + . . . Anomalous dimension for large M : universal scaling function Korchemsky’89; = cusp anomalous dimension GKP’02 Provides a critical test of AdS/CFT: � 73 � f ( g ) = 8 g 2 − 8 3 π 2 g 4 + 88 630 π 6 + 4 ζ (3) 2 Weak coupling g 8 ± . . . . 45 π 4 g 6 − 16 expansion: From perturbative 3-loop guess SYM up to g 8 4-loop result [Moch, Vermasseren, Vogt’04; Lipatov at al’04] [Bern et al’06] Strong coupling f ( g ) = 4 g − 3 log 2 − K 1 expansion: g + . . . 4 π 2 π From string perturbation theory [Gubser,Klebanov, Frolov,Tseytlin’02 Roiban,Tseytlin’07 Polyakov’02]

  6. ∆ = M + L + f ( g, L ) ln M + . . . Anomalous dimension for large M : universal scaling function Korchemsky’89; = cusp anomalous dimension GKP’02 Provides a critical test of AdS/CFT: � 73 � f ( g ) = 8 g 2 − 8 3 π 2 g 4 + 88 630 π 6 + 4 ζ (3) 2 Weak coupling g 8 ± . . . . 45 π 4 g 6 − 16 expansion: From perturbative 3-loop guess SYM up to g 8 4-loop result [Moch, Vermasseren, Vogt’04; Lipatov at al’04] [Bern et al’06] Strong coupling f ( g ) = 4 g − 3 log 2 − K 1 expansion: g + . . . 4 π 2 π From string perturbation theory [Gubser,Klebanov, Frolov,Tseytlin’02 Roiban,Tseytlin’07 Polyakov’02] [ Klebanov et al ’06, Both expansions Basso, Korchemsky, Casteill, Kotikov,Lipatov’06, Kotanski’07; should be reproduced Kristjansen’07; Alday et al ’07; IK, Serban, Volin’08 from BA equations Belitsky’07 I.K., Serban, Volin’07] (BES equation was taylored so that the weak coupling expans on is reproduced)

  7. Functional Equation for resolvents at one loop ( x=2u , no dressing factor) M Baxter’s equation for : � Q ( u ) = ( u − u k ) k =1 T ( u ) = Q ( u + 2 i � ) ( u + i � ) L + Q ( u − 2 i � ) ( u − i � ) L Q ( u ) Q ( u ) For M → ∞ with u finite only one of => linear equations for the the terms of the Baxter equation survives magnon and hole resolvents j R m ( u ) ∼ d log Q (1 − D 2 ) R m + R h = ( � u > 0) ∼ du u + i � du j R h ( u ) ∼ d log T (1 − D − 2 ) R m + R h = ( � u < 0) u − i � du D = e i �∂ u : D is a shift operator: Df ( u ) = f ( u + i � ) j is related to L by , j = L/ log( M � ) → ∞ ± → ∓ R h → j ( u → ∞ ) . u 1 <<|u | << M ϵ : the density is => asymptotic R m → ∓ i ( u → ∞ ± i 0) conditions at infinity constant, of order Log(M ϵ ) �

  8. Functional-integral equation at all orders (BES/FRS) R m ( u ) → − i � − j 2 u − 1 The universal scaling function can be extracted from 2 uf ( � , � ) + ... the behavior of the magnon resolvent at infinity: (1 − D 2 + K ) R m + R h = j Dd log x (UHP) du -- the kernel is given by the “magic formula” of � D 2 � K = D K − + K + + 2 K − 1 − D 2 K + D BES in terms of the even/odd kernels K ± K ± ( u, v ) = − 1 d � 1 − 1 � � 1 + 1 � � � ln ∓ ln 2 π i du xy xy x = x ( u + i 0) , y = y ( v − i 0) � K ± F ( u ) = dv K ± ( u, v ) F ( v ) = R − i 0 For functions F(u) analytic in UHP and the real axis and decaying faster than 1/u IK, Serban, Volin’08 1+ i 0 � v 2 − 1 � dv F ( v + i 0) ± F ( − v + i 0) K ± F ( u ) ≡ u 2 − 1 2 π i v − u − 1+ i 0 � 1 � a � 1 1 a � 1 � a 1 a � a 1 a

  9. BES/FRS equation in the x-plane Express magnon resolvent R m ~ ∑ ( u-u i ) -1 in terms of resolvent in x -space S ~ ∑ ( x-x i ) -1 R m ( u ) = S ( x ) + S (1 /x ) and require that ( D - D -1 ) S ( x ) has at most a simple pole at x = ±1. Then the action of K + drastically simplifies: to any order in ϵ , K + DR m = ( D − D − 1 ) S (1 /x ) and the BES/FRS equation becomes ( D − 1 − D ) S ( x ) + K − D [ S ( x ) − S (1 /x )] + D − 1 R h = j ∂ u log x : (upper half plane u ) − − ( D − D − 1 ) S ( x ) − K − D − 1 [ S ( x ) − S (1 /x )] + DR h = j ∂ u log x . : (lower half plane u ) √ b 2 − x 2 − j � � S ( x ) = 1 Solution in the leading � , b = 1 + ( j � ) 2 − order (first obtained by x − 1 � x Casteil-Kristjansen’07) 2.3 2.3 2.2 2.2 2.1 2.1 j 2 + 16 g 2 log M � 2.0 2.0 ∆ = M + 1.8 1.6 1.4 1.2 1.2 1.4 1.6 1.8 √ Can be solved perturbatively in ϵ . The second order found by D. Volin’08 confirms the (formidable) calculation by N. Gromov’08.

  10. The case j =0: BES equation The ϵ expansion is not uniform: two different strong coupling limits [IK, Serban, Volin’07] ϵ ➔ 0 with u fixed (Plane Waves/ Giant Magnons) ϵ ➔ 0 with z = ( u- 1 ) / ϵ fixed (Near Flat Space) u � ( ) NFS PW GM PW u � 1 1

  11. BES equation ( j =0): Complete perturbative (in ϵ ) solution Basso, Korchemsky, Kotanski’07; IK, Serban, Volin’08 At j → 0 : homogeneous equation: ( D − D − 1 ) S (1 /x ) = K + D [ S ( x ) + S (1 /x )] (UHP) ( D − D − 1 ) S ( x ) = K − D [ S ( x ) − S (1 /x )] : 1 1 => S ( x + i 0) + S ( x − i 0) = 0 (valid perturbatively in ϵ ) S ( x ) + S ( − x ) = 0 S ( x ) → ∓ i � , ( x → ∞ ± i 0) � √ S ( x ) = 1 1 − x 2 Alday, Arutyunov, Benna, Solution in the leading order: x − 1 Eden, Klebanov’07 � x

  12. 1) Solution in the PW regime (| u | >1) General solution of the homogeneous equations: ∞ � 2 k c + � 2 k c − S = 1 x k [ � ] k [ � ] � (1 − x 2 ) 2 k + (1 − x 2 ) 2 k +1 . √ � 1 − x 2 k =0 The solution has 2 singular points: at x = ±1 or u = ±1 (NFS regime) . The coefficients can be fixed by comparing with the expansion near the singular points in the rescaled variable z = u − 1 �

  13. From the homogeneous equations: G ± = 1 ± i -- analytic in ℂ / [- ∞ ,-1] ⋃ [1,+ ∞ ] ( D ∓ iD − 1 )[ S ( x ) ± iS (1 /x )] 2 ± ∓ 2 -- analytic in ℂ / [-1,1] g ± = ± i ( D − D − 1 )[ S ( x ) ± iS (1 /x )] g ± = 1 ± i D ∓ i ( D − 1) G ± h z = u − 1 Inverse Laplace w.r.t. 2 � Γ [ s s 2 Γ [ 1 2 π ± 1 2 π ] √ 4 ] 2 − ˜ 4 ]˜ g ± ( s ) = ± G ± ( s ) . s s Γ [ 1 2 π ∓ 1 Γ [1 − 2 π ] 2 + => no poles, only a branch analytic everywhere except the analytic everywhere except the cut [0, ∞] negative real axis positive real axis. expansion of rhs at s = ∞ coincides with expansion of lhs at s = 0 (known) the coefs c k ( ϵ )

  14. 3 different scaling regimes: Extend the method for the case when both S and L are large. L ~ log M Freyhult, Rej, Staudacher’ 07 Three different regimes: L /(g log M)~1 L /(g log M)~g -1/4 L /(g log M)~e -ag B. Basso, G. “Double scaling limit” Korchemsky’08 N. Gromov’08 Fioravanti, D. Volin, 08 Grinza,Rossi’08 Alday, O(6) Maldacena’07

  15. Integral equation for the sl(2) sector (BES/FRS) u ± = u ± i � , x ± = x ( u ± ) � 2 � � � � L M k − u + 1 − 1 /x + u − k x − � x + � j j e 2 i σ ( u k ,u j ) k = u + k x + x − k − u − 1 − 1 /x − u ( x ) ≡ 1 � x + 1 � j j k j � = k 2 x � ≡ 1 u -- Repulsive interaction 4 g, � � � 1 − 1 => Bethe roots on the real axis , x ( u ) = u 1 + u 2 Take log, specify the root (mode number n k ) for each u k . In the limit M → ∞ n k => Integral equation for the magnon density ρ ( u ) = dk/du L k magnons holes magnons M+L

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend