the sender excited secret key agreement model capacity
play

The Sender-Excited Secret Key Agreement Model: Capacity and Error - PowerPoint PPT Presentation

The Sender-Excited Secret Key Agreement Model: Capacity and Error Exponents Tzu-Han Chou, Vincent Y. F. Tan , Stark C. Draper Department of Electrical and Computer Engineering, University of Wisconsin-Madison Allerton (Sep 2011) Vincent Tan


  1. The Sender-Excited Secret Key Agreement Model: Capacity and Error Exponents Tzu-Han Chou, Vincent Y. F. Tan , Stark C. Draper Department of Electrical and Computer Engineering, University of Wisconsin-Madison Allerton (Sep 2011) Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 1 / 18

  2. Joint work with Stark C. Draper Tzu-Han Chou UW-Madison Qualcomm Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 2 / 18

  3. Introduction Consider the fundamental limits of the secret key generation problem Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 3 / 18

  4. Introduction Consider the fundamental limits of the secret key generation problem There is a noiseless public discussion channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 3 / 18

  5. Introduction Consider the fundamental limits of the secret key generation problem There is a noiseless public discussion channel Source is randomly excited by the sender Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 3 / 18

  6. Introduction Consider the fundamental limits of the secret key generation problem There is a noiseless public discussion channel Source is randomly excited by the sender Motivated by Key generation [Maurer, Ahlswede and Csiszár] Key generation with external excitation [Chou, Draper and Sayeed] Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 3 / 18

  7. Introduction Consider the fundamental limits of the secret key generation problem There is a noiseless public discussion channel Source is randomly excited by the sender Motivated by Key generation [Maurer, Ahlswede and Csiszár] Key generation with external excitation [Chou, Draper and Sayeed] Channels with action-dependent states [Weissman] Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 3 / 18

  8. Introduction Consider the fundamental limits of the secret key generation problem There is a noiseless public discussion channel Source is randomly excited by the sender Motivated by Key generation [Maurer, Ahlswede and Csiszár] Key generation with external excitation [Chou, Draper and Sayeed] Channels with action-dependent states [Weissman] Main contributions: Secret key capacity Inner bound for rate-reliability-secrecy-exponent region Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 3 / 18

  9. Wiretap Channel [Wyner, Csiszár and Körner] Z n ✲ Eve ˆ M ∈ [ 2 nR ] S n Y n M ✲ ✲ ✲ ✲ Enc p ( y , z | s ) Dec Alice Bob Want to transmit message reliably to Bob but keep Eve ignorant P ( ˆ M � = M ) → 0 and 1 n I ( M ; Z n ) → 0 Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 4 / 18

  10. Wiretap Channel [Wyner, Csiszár and Körner] Z n ✲ Eve ˆ M ∈ [ 2 nR ] S n Y n M ✲ ✲ ✲ ✲ Enc p ( y , z | s ) Dec Alice Bob Want to transmit message reliably to Bob but keep Eve ignorant P ( ˆ M � = M ) → 0 and 1 n I ( M ; Z n ) → 0 Wiretap channel capacity C wiretap = U − S − ( Y , Z ) { I ( U ; Y ) − I ( U ; Z ) } max Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 4 / 18

  11. Wiretap Channel [Wyner, Csiszár and Körner] Z n ✲ Eve ˆ M ∈ [ 2 nR ] S n Y n M ✲ ✲ ✲ ✲ Enc p ( y , z | s ) Dec Alice Bob Want to transmit message reliably to Bob but keep Eve ignorant P ( ˆ M � = M ) → 0 and 1 n I ( M ; Z n ) → 0 Wiretap channel capacity C wiretap = U − S − ( Y , Z ) { I ( U ; Y ) − I ( U ; Z ) } max Channel-type model Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 4 / 18

  12. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  13. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ❄ Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  14. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ✻ Φ ✻ Φ ❄ Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  15. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ✻ Φ ✻ Φ ❄ ❄ K A K B ❄ Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  16. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ✻ Φ ✻ Φ ❄ ❄ K A K B ❄ Public Channel Secret keys are generated from dependent sources X , Y , Z Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  17. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ✻ Φ ✻ Φ ❄ ❄ K A K B ❄ Public Channel Secret keys are generated from dependent sources X , Y , Z P ( K A � = K B ) → 0 and 1 n I ( K A ; Z n , Φ) → 0 Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  18. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ✻ Φ ✻ Φ ❄ ❄ K A K B ❄ Public Channel Secret keys are generated from dependent sources X , Y , Z P ( K A � = K B ) → 0 and 1 n I ( K A ; Z n , Φ) → 0 Secret key capacity C SK = W − U − X − ( Y , Z ) { I ( U ; Y | W ) − I ( U ; Z | W ) } max Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  19. Secret Key Generation [Maurer, Ahlswede & Csiszár] p ( x , y , z ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ✻ Φ ✻ Φ ❄ ❄ K A K B ❄ Public Channel Secret keys are generated from dependent sources X , Y , Z P ( K A � = K B ) → 0 and 1 n I ( K A ; Z n , Φ) → 0 Secret key capacity C SK = W − U − X − ( Y , Z ) { I ( U ; Y | W ) − I ( U ; Z | W ) } max Source-type model Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 5 / 18

  20. Key Generation with External Excitation [Chou et al.] p ( x , y , z | s ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve Φ ✻ Φ ✻ Φ ❄ ❄ K A K B ❄ Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 6 / 18

  21. Key Generation with External Excitation [Chou et al.] s n Wireless channels ⇒ ❄ auxiliary randomness p ( x , y , z | s ) Due to multipath fading X n Y n Z n ❄ ❄ ❄ Transmissions are Alice Bob Eve bi-directional ⇒ X , Y , Z Φ ✻ Φ ✻ Φ ❄ ❄ generated by transmitting K A K B prearranged sounding ❄ Public Channel signals. Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 6 / 18

  22. Key Generation with External Excitation [Chou et al.] s n Wireless channels ⇒ ❄ auxiliary randomness p ( x , y , z | s ) Due to multipath fading X n Y n Z n ❄ ❄ ❄ Transmissions are Alice Bob Eve bi-directional ⇒ X , Y , Z Φ ✻ Φ ✻ Φ ❄ ❄ generated by transmitting K A K B prearranged sounding ❄ Public Channel signals. External excitation via a deterministic sounding signal s n Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 6 / 18

  23. Key Generation with External Excitation [Chou et al.] s n Wireless channels ⇒ ❄ auxiliary randomness p ( x , y , z | s ) Due to multipath fading X n Y n Z n ❄ ❄ ❄ Transmissions are Alice Bob Eve bi-directional ⇒ X , Y , Z Φ ✻ Φ ✻ Φ ❄ ❄ generated by transmitting K A K B prearranged sounding ❄ Public Channel signals. External excitation via a deterministic sounding signal s n Secret key capacity C SK = p ( w , u | s ) , p ( x | u , s ) , p ( s ) { I ( U ; Y | W , S ) − I ( U ; Z | W , S ) } max Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 6 / 18

  24. Our model: Sender-Excited Secret Key Agreement p ( x , y , z | s ) X n Y n Z n ❄ ❄ ❄ Alice Bob Eve ✻ ✻ Φ ❄ Φ ❄ Φ K A K B ❄ Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 7 / 18

  25. Our model: Sender-Excited Secret Key Agreement p ( x , y , z | s ) M X n Y n Z n ❄ ❄ ❄ ❄ Alice Bob Eve ✻ ✻ Φ ❄ Φ ❄ Φ K A K B ❄ Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 7 / 18

  26. Our model: Sender-Excited Secret Key Agreement S n ( M ) ❄ p ( x , y , z | s ) M X n Y n Z n ❄ ❄ ❄ ❄ Alice Bob Eve ✻ ✻ Φ ❄ Φ ❄ Φ K A K B ❄ Public Channel Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 7 / 18

  27. Our model: Sender-Excited Secret Key Agreement S n ( M ) ❄ p ( x , y , z | s ) M X n Y n Z n ❄ ❄ ❄ ❄ Alice Bob Eve ✻ ✻ Φ ❄ Φ ❄ Φ K A K B ❄ Public Channel A ( 2 nR M , 2 nR Φ , n , Γ) code consists of a uniform M ∈ [ 2 nR M ] and Vincent Tan (UW-Madison) Sender-Excited Secret Key Agreement Model Allerton 2011 7 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend