the riemann existence theorem
play

The Riemann existence theorem d k d , P ( z, z ) = a k ( z ) a - PDF document

1 2 The Riemann existence theorem d k d , P ( z, z ) = a k ( z ) a k C [ z ] , a d 0 Irregular Hodge theory d z 0 S = { z | a d ( z ) = 0 } sing. set (assumed = ) Claude Sabbah Associated linear system


  1. 1 2 The Riemann existence theorem � d � k d � , P ( z, ∂ z ) = a k ( z ) a k ∈ C [ z ] , a d �≡ 0 Irregular Hodge theory d z 0 S = { z | a d ( z ) = 0 } sing. set (assumed � = ∅ ) Claude Sabbah Associated linear system Centre de Math´ ematiques Laurent Schwartz     ´ Ecole polytechnique, CNRS, Universit´ e Paris-Saclay u 1 u 1 d Palaiseau, France . .     . . A ( z ) ∈ End( C ( z ) d ) . . ( ∗ )  = A ( z )  ,   d z u d u d Programme SISYPH ANR-13-IS01-0001-01/02 � Monodromy representation of the solution vectors by analytic continuation ρ : π 1 ( C � S, z o ) − → GL d ( C ) Irregular Hodge theory – p. 1/23 Irregular Hodge theory – p. 2/23 3 4 Rigid irreducible representations The Riemann existence theorem Assume ρ is irreducible : � � � − 1 ) ⇒ ( T s ∈ GL d ( C )) s ∈ S (and T ∞ := ρ ⇐ s T s cannot put all T s in a upper block-triang. form simultaneously Conversely , any ρ (any finite S ) comes from a and rigid : system ( ∗ ) s.t., ∀ s ∈ S ∪ ∞ , ∃ formal merom. gauge transf. → at most simple pole (i.e., reg. sing. ): then ρ ′ ∼ ρ if T ′ s ∼ T s ∀ s ∈ S ∪ ∞ , � s.t. � ∃ M ( z − s ) ∈ GL d C ( ( z − s ) ) and assume ∀ s ∈ S ∪ ∞ , � � M − 1 AM + M − 1 M ′ ( z − s ) · ∈ End( C [ [ z − s ] ]) . z ∀ λ eigenvalue of T s , | λ | = 1 Proof: Near s ∈ S , this amounts to finding ⇒ More structure on the solution to the Riemann C s ∈ End( C d ) s.t. T s = e − 2 πiC s . Then existence th. A ( z ) := C s / ( z − s ) has monodromy T s around s . Globalization: non-explicit procedure. Irregular Hodge theory – p. 3/23 Irregular Hodge theory – p. 4/23 Variations of pol. Hodge structure 5 Variations of pol. Hodge structure 6 T HEOREM (Deligne 1987, Simpson 1990): T HEOREM (Deligne 1987, Simpson 1990): ∃ ! var. of polarized Hodge structure (wt. = 0 ) adapted to ρ ∃ ! var. of polarized Hodge structure (wt. = 0 ) adapted to ρ G z : pos. def. Herm. d × d matrix, C ∞ w.r.t. z ∈ C� S ⇒ Numbers f p = rk F p H z attached to ρ . ∀ z ∈ C� S : Hodge decomp. Moreover (Griffiths), ⊥ � C d = = H p p H p H − p z , z z s ∈ S ] d = O ( C � S ) d C [ z, ( z − s ) − 1 G -mod. growth . z : C ∞ & possibly not hol. but z �→ H p z �→ F p H z := � p ′ � p H p ′ z holomorphic and � d � · F p H z ⊂ F p − 1 H z d z + A G z s. t. � � G z | H p := ( − 1) p G | H p , then ∂ z � G z · � G − 1 = t A ( z ) . z Irregular Hodge theory – p. 5/23 Irregular Hodge theory – p. 6/23 Hypergeom. differential eqns 7 Confluent hypergeom. diff. eqns 8 � 0 � α 1 � · · · � α d < 1 , Given α i � = β j ∀ i, j . � � � � d ′ z d d z d � � 0 � β 1 � · · · � β d < 1 , P ( z, ∂ z ) := d z − α i − z d z − β j i =1 j =1 � � � � � d z d � d z d P ( z, ∂ z ) := d z − α i − z d z − β j with d ′ < d ⇒ S = 0 and 0 is an irreg. sing. i =1 j =1 ( ∞ = reg. sing). S = { 0 , 1 } . Beukers & Heckman: ρ is irreducible rigid , with Riemann existence th. breaks down for irreg. sing. λ = e − 2 π i α or e 2 π i β . Need Stokes data to reconstruct the differential eqn Set ℓ j = # { i | α i � β j } − j from sols. T HEOREM (R. Fedorov, 2015): � Riemann-Hilbert-Birkhoff correspondence. f p = # { j | ℓ j � p } mixed: F 1 = 0 , F 0 = O ( C � S ) d ⇒ unitary conn. unmixed: 0 = F d ⊂ · · · ⊂ F 0 = O ( C � S ) d . Irregular Hodge theory – p. 7/23 Irregular Hodge theory – p. 8/23

  2. Confluent hypergeom. diff. eqns 9 10 Harmonic metrics Given: � � � � a diff. system d � d ′ z d � d z d d z + A ( z ) , A ( z ) ∈ End( C ( z ) d ) , P ( z, ∂ z ) := d z − α i − z d z − β j i =1 j =1 pole set = S ⊂ C . with d ′ < d . G z : any pos. def. Herm. mtrx, C ∞ w.r.t. z ∈ C� S . G z d × d , C ∞ w.r.t. z , s.t. Same condition on α, β ’s ⇒ irreducible and rigid : Then ∃ ! A ′ G z , A ′′ irreducible : Cannot split P ( z, ∂ z ) = P 1 ( z, ∂ z ) · P 2 ( z, ∂ z ) in C ( z ) � ∂ z � with ∂ z G z = t A ′ G z · G z + G z · A ′′ G z deg P 1 , deg P 2 � 1 . (compatibility with G ) ∂ z G z = t A ′′ G z · G z + G z · A ′ rigid : Any other linear diff. syst. (sings at S ∪ ∞ ) G z which is gauge-equiv. over C ( ) at each − A ′′ = ( A − A ′ ) ∗ . ( z − s ) G z G z � �� � � �� � s ∈ S ∪ ∞ to the given system is gauge-equiv. θ ′′ θ ′ over C ( z ) to the given system. z z G is harmonic w.r.t. A if But: Cannot find a var. of pol. Hodge struct. s.t. the sol. to R-H-B exist. th. given by O ( C � S ) d G -mod. growth . ∂ z θ ′ z + [ θ ′ z , θ ′∗ z ] = 0 Irregular Hodge theory – p. 9/23 Irregular Hodge theory – p. 10/23 11 12 The irregular Hodge filtration Harmonic metrics T HEOREM (Simpson 1990, CS 1998, Biquard-Boalch Deligne (2007): 2004, T. Mochizuki 2011): “The analogy between vector bundles with integrable If A is irreducible , ∃ ! harmonic metric G w.r.t. A s.t. connection having irregular singularities at infinity on a Coefs of Char θ ′ have mod. growth at S ∪ ∞ , complex algebraic variety U and ℓ -adic sheaves with wild C [ z, (( z − s ) − 1 ) s ∈ S ] d = ( O ( C � S ) d ) G -mod. growth . ramification at infinity on an algebraic variety of characteristic p , leads one to ask how such a vector bundle with integrable connection can be part of a system of E.g., the Hodge metric of a var. pol. Hodge structure realizations analogous to what furnishes a family of is harmonic w.r.t. the reg. sing. conn. A . motives parametrized by U ... If A is irreg. , what about rigid irreducible A ? In the ‘motivic’ case, any de Rham cohomology group has Answer in the last slide of the talk. a natural Hodge filtration. Can we hope for one on dR ( U, ∇ ) for some classes of ( V, ∇ ) with irregular H i singularities?” Irregular Hodge theory – p. 11/23 Irregular Hodge theory – p. 12/23 The irregular Hodge filtration 13 The irregular Hodge filtration 14 “The reader may ask for the usefulness of a “Hodge Ex.: U = C ∗ , f : z �→ − z , ∇ = d + d f + α d z/z filtration” not giving rise to a Hodge structure. I hope that it C [ z, z − 1 ] · d z ∇ forces bounds to p -adic valuations of Frobenius C [ z, z − 1 ] H 1 dR ( U, ∇ ) z eigenvalues. That the cohomology of ‘ e − z z α ’ ( 0 < α < 1 ) has Hodge degree 1 − α is anlogous to formulas giving e − z z α ≀ ≀ e z z − α ≀ the p -adic valuation of Gauss sums.” � � C [ z, z − 1 ] · e − z z α d z e − z z α d z d C [ z, z − 1 ] e − z z α C · z z � ∞ e − z z α d z period: z = Γ( α ) 0 ? dR ( U, ∇ ) . ⇒ [ e − z z α d z/z ] ∈ F 1 − α H 1 Irregular Hodge theory – p. 13/23 Irregular Hodge theory – p. 14/23 The Hodge filtration in dim � 1 15 Twisted de Rham cohomology 16 Setting: Setting: U : smooth cplx quasi-proj. var. (e.g. U = ( C ∗ ) n ). Choose (according to Hironaka) any X such that U : smth cplx quasi-proj. var., f : U → C alg. fnct. X : smooth cplx proj. variety, D : reduced divisor with normal crossings in X dR ( U, d + d f ) : Twisted de Rham cohomology H k locally, D = { x 1 · · · x ℓ = 0 } Cohomology of the alg. de Rham cplx. E.g. U = C n : U = X � D . 0 → C [ x ] → � i C [ x ]d x i → · · · → � T HEOREM (Deligne 1972): i C [ x ]d � x i → C [ x ]d x → 0 H k ( U, C ) ≃ H k � � • X, (Ω X (log D ) , d) and ∀ p , ( E 1 -degeneration ) → � i ( g ′ x i + gf ′ g ( x ) �− x i )d x i H k � � → H k � � X, σ � p (Ω � � � • X (log D ) , d) − X, (Ω • X (log D ) , d) � i ( − 1) i − 1 (( h i ) ′ x i + h i f ′ i h i d � x i �− → x i ) d x is injective , its image defining the Hodge filtration F p H k ( U, C ) . � Mixed Hodge structure on H k ( U, C ) . Irregular Hodge theory – p. 15/23 Irregular Hodge theory – p. 16/23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend