the prism tableau model for schubert polynomials
play

The Prism Tableau Model for Schubert Polynomials Anna Weigandt - PowerPoint PPT Presentation

The Prism Tableau Model for Schubert Polynomials Anna Weigandt University of Illinois at Urbana-Champaign weigndt2@illinois.edu April 16th, 2016 Based on joint work with Alexander Yong arXiv:1509.02545 . . . . . . . . . . . . .


  1. The Prism Tableau Model for Schubert Polynomials Anna Weigandt University of Illinois at Urbana-Champaign weigndt2@illinois.edu April 16th, 2016 Based on joint work with Alexander Yong arXiv:1509.02545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  2. Overview The Prism Tableau Model for Schubert Polynomials Describe a tableau based combinatorial model for Schubert polynomials Give a description of the underlying geometric ideas of the proof Apply prism tableaux to study alternating sign matrix varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  3. The Ring of Symmetric Polynomials Λ n = { f ∈ Z [ x 1 , . . . , x n ] : w · f = f for all w ∈ S n } Schur polynomials { s λ } form a Z -linear basis for Λ n and have applications in geometry and representation theory Model for Schur polynomials as a sum over semistandard Young tableaux 1 + 1 2 2 2 1 s (2 , 1) ( x 1 , x 2 ) = x 1 x 2 2 + x 2 1 x 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  4. There is an inclusion: Λ n ֒ → Pol = Z [ x 1 , x 2 , ... ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  5. There is an inclusion: Λ n ֒ → Pol = Z [ x 1 , x 2 , ... ] Question: How do we lift the Schur polynomials to a basis of Pol ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  6. There is an inclusion: Λ n ֒ → Pol = Z [ x 1 , x 2 , ... ] Question: How do we lift the Schur polynomials to a basis of Pol ? An answer: Schubert polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  7. Schubert Polynomials Introduced by Lascoux and Sch¨ utzenberger in 1982 to study the cohomology of the complete flag variety Indexed by permutations, { S w : w ∈ S n } To find S w : S w 0 := x n − 1 x n − 2 . . . x n − 1 1 2 The rest are defined recursively by divided difference operators: ∂ i f := f − s i · f x i − x i +1 S ws i := ∂ i S w if w ( i ) > w ( i + 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  8. Schubert Polynomials for S 3 x 2 321 1 x 2 � ❅ � ❅ s 1 s 2 ∂ 1 ∂ 2 � ❅ � ❅ � ❅ � ❅ x 2 231 312 x 1 x 2 1 s 2 s 1 ∂ 2 ∂ 1 213 132 x 1 + x 2 x 1 ❅ � ❅ � ❅ � ❅ � ∂ 1 ∂ 2 s 1 s 2 ❅ � ❅ � 123 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  9. The Schubert Basis Schubert polynomials as a basis: ι There is a natural inclusion of symmetric groups S n → S n +1 − Schubert polynomials are stable under this inclusion: S w = S ι ( w ) { S w : w ∈ S ∞ } forms a Z -linear basis of Pol = Z [ x 1 , x 2 , . . . ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  10. The Schubert Basis Schubert polynomials as a basis: ι There is a natural inclusion of symmetric groups S n → S n +1 − Schubert polynomials are stable under this inclusion: S w = S ι ( w ) { S w : w ∈ S ∞ } forms a Z -linear basis of Pol = Z [ x 1 , x 2 , . . . ] Schubert polynomials as a lift of Schur polynomials: Every Schur polynomial is a Schubert polynomial for some w ∈ S ∞ S w is a Schur polynomial if and only if w is Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  11. Problem : Is there a combinatorial model for S w that is analogous to semistandard tableau? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  12. Problem : Is there a combinatorial model for S w that is analogous to semistandard tableau? Many earlier combinatorial models : A. Kohnert, S. Billey-C. Jockusch-R. Stanley, S. Fomin-A. Kirillov, S. Billey-N.Bergeron, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  13. Problem : Is there a combinatorial model for S w that is analogous to semistandard tableau? Many earlier combinatorial models : A. Kohnert, S. Billey-C. Jockusch-R. Stanley, S. Fomin-A. Kirillov, S. Billey-N.Bergeron, ... A new solution: Prism Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  14. What is a Prism Tableau? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  15. Some Definitions w = 35124 Each permutation has an associated: diagram : D ( w ) = { ( i , j ) : 1 ≤ i , j ≤ n , w ( i ) > j and w − 1 ( j ) > i } ⊂ n × n essential set : E ss ( w ) = { southeast-most boxes of each component of D ( w ) } rank function : r w ( i , j ) = the rank of the ( i , j ) NW submatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  16. The Shape Fix w ∈ S n . Each e = ( a , b ) ∈ E ss ( w ) indexes a color Let R e be an ( a − r w ( e )) × ( b − r w ( e )) rectangle in the n × n grid (left justified, bottom row in same row as e ) Define the shape : ∪ λ ( w ) = R e e ∈E ss ( w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  17. The Shape Fix w ∈ S n . Each e = ( a , b ) ∈ E ss ( w ) indexes a color Let R e be an ( a − r w ( e )) × ( b − r w ( e )) rectangle in the n × n grid (left justified, bottom row in same row as e ) Define the shape : ∪ λ ( w ) = R e e ∈E ss ( w ) Example: w = 35142 e 1 e 2 ⇒ ⇒ λ ( w ) = R e 1 R e 2 e 3 R e 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  18. Prism Tableaux A prism tableau for w is a filling of λ ( w ) with colored labels, indexed by E ss ( w ) so that labels of color e : sit in boxes of R e weakly decrease along rows from left to right strictly increase along columns from top to bottom are flagged by row: no label is bigger than the row it sits in 1 1 122 21 1 2 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  19. The Weight of a Tableau Define the weight: x # of antidiagonals containing a label of number i ∏ wt ( T ) = i i Example: 1 1 wt ( T ) = x 2 T = 1 x 2 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  20. Minimal Prism Tableaux Fix a prism tableau T . T is minimal if the degree of wt ( T ) = ℓ ( w ). Example: w = 1432 11 1 21 1 3 3 wt ( T ) = x 2 wt ( T ) = x 2 1 x 3 1 x 2 x 3 minimal not minimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  21. Unstable Triples We say labels ( ℓ c , ℓ d , ℓ ′ e ) in the same antidiagonal T form an unstable triple if ℓ < ℓ ′ and the tableau T ′ obtained by replacing ℓ c with ℓ ′ c is itself a prism tableau. 1 1 1 3 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  22. The Prism model for Schubert Polynomials Let Prism (w) be the set of minimal prism tableaux for w which have no unstable triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  23. The Prism model for Schubert Polynomials Let Prism (w) be the set of minimal prism tableaux for w which have no unstable triples . Theorem (W.- A. Yong 2015) ∑ S w = wt ( T ) . T ∈ Prism ( w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  24. Example for w = 42513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

  25. Example for w = 42513 (continued) 11 1 1 11 1 1 11 1 1 22 1 22 1 22 2 33 3 33 2 33 3 In Prism ( w ) In Prism ( w ) Not minimal 11 1 1 11 1 1 11 1 1 21 1 21 1 21 1 33 3 33 2 32 2 Unstable triple Unstable triple Not minimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anna Weigandt Prism Tableau Model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend