the price of routing unsplittable flow
play

The Price of Routing Unsplittable Flow Baruch Awerbuch Yossi Azar - PowerPoint PPT Presentation

The Price of Routing Unsplittable Flow Baruch Awerbuch Yossi Azar Amir Epstein presented by Yajun Wang (yalding@cs.ust.hk) for COMP670O Spring 2006, HKUST 1-1 Problem Formulation Graph G = ( V, E ) and k source-destination pairs { s i , t


  1. The Price of Routing Unsplittable Flow Baruch Awerbuch Yossi Azar Amir Epstein presented by Yajun Wang (yalding@cs.ust.hk) for COMP670O Spring 2006, HKUST 1-1

  2. Problem Formulation • Graph G = ( V, E ) and k source-destination pairs { s i , t i } • Q i denotes the set of (simple) s i − t i paths, and • Latency function f e : R + → R + • Bandwidth request ( s j , t j , w j ) w j ∈ R + • A flow is a function vector ( l j ) . l j : Q j → R + • A flow is feasible if : � Q ∈Q j l j ( Q ) = w j 2-1

  3. Flow and Strategy • Splittable Flow l j ( Q ) ∈ [0 , w j ] • Unsplittable Flow l j ( Q ) ∈ { 0 , w j } Pure Strategies: User j selectes a single path Q ∈ Q j . Mixed Strategies: User j selectes a probability distribution { p Q,j } over Q j . 3-1

  4. Latency for Users • Pure Strategies: Let S be the system of strategies. Let Q j be the choice of user j , and Q = ∪ j Q j . Define J ( e ) = { j | e ∈ Q} and l e = � j ∈ J ( e ) w j . Latency (per unit) of user j for select path Q (instead of Q j ): � � c Q,j = f e ( l e ) + f e ( l e + w j ) ( e ∈ Q ) ∧ ( e ∈ Q j ) ( e ∈ Q ) ∧ ( e/ ∈ Q j ) 4-1

  5. Latency for Users • Mixed Strategies: Let S be the system of strategies with { p j } Let { X Q,j } be the set of indicator random variables: whether request j is assigned to Q . l e = � n X e,j = � Q | e ∈ Q X Q,j j =1 X e,j w j Expected latency (per unit) of user j for select path Q in S � = E [ f e ( l e ) | X Q,j = 1] c Q,j e ∈ Q n � � = E [ f e ( X e,i w i + w j )] e ∈ Q i =1 ,i � = j � = E [ f e ( l e + (1 − X e,j ) w j )] e ∈ Q 5-1

  6. Nash Equilibrium A system S is at Nash equilibrium if and only if for every j ∈ { 1 , 2 , . . . , n } and Q, Q ′ ∈ Q j , with p Q,j > 0( Q = Q j ) c Q,j ≤ c Q ′ ,j Social cost (expected) for system S is: C ( S ) = E [ � e ∈ E f e ( l e ) l e ] Coordination Ration (Price of Anarchy) is: C ( S ) R = max S C ( S ∗ ) S takes over all Nash equilibrium(N.E), and S ∗ is the Social Optimal(S.O) solution. 6-1

  7. Nash Equilibrium for Linear Latency Functions Theorem For linear latency functions and pure strategies, √ the worse-case coordination ratio R is at most 3+ 5 ≈ 2 . 618 2 Proof: Let Q j be the path assigned for request j in N.E. Let Q ∗ j be the path assigned for request j in S.O. � � � a e l e + b e ≤ a e l e + b e + a e ( l e + w j ) + b e e ∈ Q j ( e ∈ Q ∗ j ) ∧ ( e ∈ Q j ) ( e ∈ Q ∗ j ) ∧ ( e/ ∈ Q j ) � ≤ a e ( l e + w j ) + b e e ∈ Q ∗ j X X X X ( a e l e + b e ) w j + a e w 2 ( a e l e + b e ) w j ≤ j j e ∈ Q j j e ∈ Q ∗ j ( a e l e + b e ) w j + a e w 2 X X X X ( a e l e + b e ) w j ≤ j e ∈ E e ∈ E j ∈ J ( e ) j ∈ J ∗ ( e ) 7-1

  8. Nash Equilibrium for Linear Latency Functions Proof (cont’): X X X X ( a e l e + b e ) w j + a e w 2 ( a e l e + b e ) w j ≤ j e ∈ E e ∈ E j ∈ J ( e ) j ∈ J ∗ ( e ) X X X w d e ) d w j = l ∗ j ≤ ( l ∗ w j = l e , e , j ∈ J ( e ) j ∈ J ∗ ( e ) j ∈ J ∗ ( e ) 2 � � ( a e l e + b e ) l ∗ e + a e l ∗ ( a e l e + b e ) l e ≤ e e ∈ E e ∈ E � � a e l e l ∗ ( a e l ∗ e + b e ) l ∗ = e + e e ∈ E e ∈ E 8-1

  9. Nash Equilibrium for Linear Latency Functions Proof (cont’): � � � a e l e l ∗ ( a e l ∗ e + b e ) l ∗ ( a e l e + b e ) l e ≤ e + e e ∈ E e ∈ E e ∈ E sX X X 2 a e l e l ∗ a e l 2 a e l ∗ ≤ e e e Cauchy-Schwartz Inequality e ∈ E e ∈ E e ∈ E sX X ( a e l e + b e ) l e ( a e l ∗ e + b e ) l ∗ ≤ e e ∈ E e ∈ E √ � x 2 ≤ x + 1 , x 2 ≤ 3+ C ( S ) 5 x = C ( S ∗ ) 2 9-1

  10. Nash Equilibrium for Linear Latency Functions Unweighted Demand: w j = 1 Theorem For linear latency functions, unweighted demand and pure strategies, the worse-case coordination ratio R is at most 2 . 5 Proof: X X X X ( a e l e + b e ) w j + a e w 2 ( a e l e + b e ) w j ≤ j e ∈ E e ∈ E j ∈ J ( e ) j ∈ J ∗ ( e ) X X a e l e l ∗ e + a e l ∗ e + b e l ∗ ( a e l e + b e ) l e ≤ e e ∈ E e ∈ E 10-1

  11. Nash Equilibrium for Linear Latency Functions Proof: X X a e l e l ∗ e + a e l ∗ e + b e l ∗ ( a e l e + b e ) l e ≤ e e ∈ E e ∈ E e + 3 2 b e l e = 3 e + b e l e ) − 1 a e l 2 2( a e l 2 2 a e l 2 ( a e l e + b e ) l e ≤ e 3 e ) − 1 2 al 2 2( al e l ∗ e + al ∗ e + bl ∗ ≤ e 1 e ) + 3 e − l 2 2 a (3 l e l ∗ e + 3 l ∗ 2 b e l ∗ = e 5 2 + 3 3 ij + 3 j − i 2 ≤ 5 j 2 2 a e l ∗ 2 b e l ∗ ≤ e e 5 2( a e l ∗ e + b e ) l ∗ ≤ e 11-1

  12. Nash Equilibrium for Linear Latency Functions Theorem For linear latency functions and mixed strategies, √ the worse-case coordination ratio R is at most 3+ 5 ≈ 2 . 618 2 Proof: � = E [ f e ( l e ) | X Q,j = 1] c Q,j e ∈ Q n � � = E [ f e ( X e,i w i + w j )] e ∈ Q i =1 ,i � = j � = E [ f e ( l e + (1 − X e,j ) w j )] e ∈ Q The change from X Q,j to X e,j does not affect the proofs. In particular, the proof of Lemma 3.4 is still correct, if we replace p Q,j − p 2 Q,j by (1 − p e,j ) p Q,j . 12-1

  13. Nash Equilibrium for Linear Latency Functions Remarks: If we allow splittable flows, the price of anarchy is bounded by 4 3 [Roughgarden, SODA 05] Though I am doubt on this result, as the Proposition 1 there is counter intuitive to me. Unweighted demand will not achieve better ratio in mixed strategies. Because we lose the properties for integers. 13-1

  14. Lower Bounds for Linear Latency Functions √ V φ = 1+ 5 , 1 Demands: 2 0 • User 1: ( U, V, φ ) x x • User 2: ( U, W, φ ) x U x • User 3: ( V, W, 1) • User 4: ( W, V, 1) 0 W 2 φ 2 + 2( φ + 1) 2 2 φ 2 + 2 Optimal: N.E • User 1: UWV • User 1: UV • User 2: UV W • User 2: UW • User 3: V UW • User 3: V W • User 4: WUV • User 4: WV 14-1

  15. Nash Equilibrium for Polynomial Latency Functions Theorem For polynomial latency functions of degree d and pure and mixed strategies, the worse-case coordination ratio R is O (2 d d d +1 ) Theorem For polynomial latency functions of degree d and pure strategies, the worse-case coordination ratio R is Ω( d d/ 2 ) 15-1

  16. Lower Bounds for Polynomial Latency Functions 0 Optimal: f ( x ) = x d No job for grup 0 Group k assigns jobs to 1 links of group k − 1 . Nash Equilibrium: l ! k ! links k l ! k − 1! jobs Group k assigns jobs to links of group k . l − 1 l − 1 l ! 1 k ! 1 d = l ! X X OPT = k ! ≈ l ! · e l k =0 k =0 l l ! l ! ( d/ 2) d · ( d/ 2) d = l ! · Ω( d d/ 2 ) k ! k d ≥ X NE = k =1 16-1

  17. Remaining: Lower bounds for mixed strategies. Gap in the bounds of polynomial latency functions: O (2 d d d +1 ) and Ω( d d/ 2 ) . 17-1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend