the parametric complexity of lossy counter machines
play

The Parametric Complexity of Lossy Counter Machines Sylvain Schmitz - PowerPoint PPT Presentation

Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem The Parametric Complexity of Lossy Counter Machines Sylvain Schmitz ICALP , July 12, 2019, Patras 1/15 Lossy Counter Machines Controlled Sequences


  1. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Backward Coverability (Arnold & Latteux’78) q 1 c 1 −− c 1 ++ Example: coverability of q 2 ( 1,1 ) in q 3 q 2 c 2 ++ = { q ( v ) | ∃ v ′ � ( 1,1 ) . q ( v ) → � 4 def ? q 2 ( v ′ ) } c 2 = 0 U 4 ℓ U 0 U 1 q 1 U 2 ↑ q 2 ( 1,1 ) ℓ U 3 ↑ q 1 ( 0,1 ) ℓ ↑ q 3 ( 0,0 ) U 4 ℓ ↑ q 1 ( 1,0 ) q 2 ℓ ↑ q 2 ( 1,0 ) q 3 6/15

  2. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Backward Coverability (Arnold & Latteux’78) q 1 c 1 −− c 1 ++ Example: coverability of q 2 ( 1,1 ) in q 3 q 2 c 2 ++ = { q ( v ) | ∃ v ′ � ( 1,1 ) . q ( v ) → � 4 def ? q 2 ( v ′ ) } c 2 = 0 U 4 ℓ U 0 q 3 ( 1,0 ) U 1 q 1 U 2 ↑ q 2 ( 1,1 ) ℓ U 3 ↑ q 1 ( 0,1 ) ℓ ↑ q 3 ( 0,0 ) U 4 ℓ ℓ ↑ q 1 ( 1,0 ) q 2 ℓ ↑ q 2 ( 1,0 ) q 3 6/15

  3. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Backward Coverability (Arnold & Latteux’78) q 1 c 1 −− c 1 ++ Example: coverability of q 2 ( 1,1 ) in q 3 q 2 c 2 ++ = { q ( v ) | ∃ v ′ � ( 1,1 ) . q ( v ) → � 5 def ? q 2 ( v ′ ) } c 2 = 0 U 5 ℓ U 0 q 3 ( 1,0 ) U 1 q 1 U 2 ↑ q 2 ( 1,1 ) ℓ U 3 ↑ q 1 ( 0,1 ) ℓ ↑ q 3 ( 0,0 ) U 4 ℓ ℓ U 5 ↑ q 1 ( 1,0 ) q 2 ℓ ↑ q 2 ( 1,0 ) ℓ ↑ q 1 ( 0,0 ) q 3 6/15

  4. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Backward Coverability (Arnold & Latteux’78) q 1 c 1 −− c 1 ++ Example: coverability of q 2 ( 1,1 ) in q 3 q 2 c 2 ++ = { q ( v ) | ∃ v ′ � ( 1,1 ) . q ( v ) → � 6 def ? q 2 ( v ′ ) } c 2 = 0 U 6 ℓ U 0 q 3 ( 1,0 ) U 1 q 1 U 2 ↑ q 2 ( 1,1 ) ℓ U 3 ↑ q 1 ( 0,1 ) ℓ ↑ q 3 ( 0,0 ) U 4 ℓ ℓ U 5 ↑ q 1 ( 1,0 ) q 2 ℓ U 6 ↑ q 2 ( 1,0 ) ℓ ↑ q 1 ( 0,0 ) ℓ ↑ q 2 ( 0,0 ) q 3 6/15

  5. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Backward Coverability (Arnold & Latteux’78) q 1 c 1 −− c 1 ++ Example: coverability of q 2 ( 1,1 ) in q 3 q 2 c 2 ++ def = { q ( v ) | ∃ v ′ � ( 1,1 ) . q ( v ) → ∗ ? ℓ q 2 ( v ′ ) } c 2 = 0 U 6 U 0 q 3 ( 1,0 ) U 1 q 1 U 2 ↑ q 2 ( 1,1 ) ℓ U 3 ↑ q 1 ( 0,1 ) ℓ ↑ q 3 ( 0,0 ) U 4 ℓ ℓ U 5 ↑ q 1 ( 1,0 ) q 2 ℓ U 6 ↑ q 2 ( 1,0 ) ℓ ↑ q 1 ( 0,0 ) ℓ ℓ ↑ q 2 ( 0,0 ) q 3 6/15

  6. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Backward Coverability (Arnold & Latteux’78) q 1 c 1 −− c 1 ++ Example: coverability of q 2 ( 1,1 ) in q 3 q 2 c 2 ++ def = { q ( v ) | ∃ v ′ � ( 1,1 ) . q ( v ) → ∗ ? ℓ q 2 ( v ′ ) } c 2 = 0 U 6 U 0 U 1 q 1 U 2 ↑ q 2 ( 1,1 ) ℓ U 3 ↑ q 1 ( 0,1 ) ℓ ↑ q 3 ( 0,0 ) U 4 ℓ U 5 ↑ q 1 ( 1,0 ) q 2 ℓ U 6 ↑ q 2 ( 1,0 ) ℓ ↑ q 1 ( 0,0 ) ℓ ↑ q 2 ( 0,0 ) q 3 The sequence q 2 ( 1,1 ) , q 1 ( 0,1 ) , q 3 ( 0,0 ) , q 1 ( 1,0 ) , q 2 ( 1,0 ) , q 1 ( 0,0 ) , q 2 ( 0,0 ) is bad 6/15

  7. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite 7/15

  8. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) 7/15

  9. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) 7/15

  10. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) 7/15

  11. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) 7/15

  12. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 6,0 ) 7/15

  13. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 6,0 ) , ( 5,0 ) 7/15

  14. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 6,0 ) , ( 5,0 ) , ( 4,0 ) 7/15

  15. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 6,0 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) 7/15

  16. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 6,0 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) , ( 2,0 ) 7/15

  17. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 6,0 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) , ( 2,0 ) , ( 1,0 ) 7/15

  18. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Bad Sequences Over a qo ( X , � ) ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ ( X , � ) wqo if all bad sequences are finite... ... but can be of arbitrary length Example (in N 2 ) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 6,0 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) , ( 2,0 ) , ( 1,0 ) , ( 0,0 ) 7/15

  19. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] 8/15

  20. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) g 0 ( 2 ) = 2 [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) 8/15

  21. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if g 1 ( 2 ) = 3 ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) 8/15

  22. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled g 2 ( 2 ) = 4 by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) 8/15

  23. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j g 3 ( 2 ) = 5 ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 5,0 ) 8/15

  24. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j g 4 ( 2 ) = 6 ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 5,0 ) , ( 4,0 ) 8/15

  25. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j g 5 ( 2 ) = 7 ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) 8/15

  26. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � g 6 ( 2 ) = 8 ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) , ( 2,0 ) 8/15

  27. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � g 7 ( 2 ) = 9 ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) , ( 2,0 ) , ( 1,0 ) 8/15

  28. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences g 8 ( 2 ) = 10 Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Example (in N 2 with n 0 = 2 and g ( n ) = n + 1) ( 0,2 ) , ( 2,1 ) , ( 0,1 ) , ( 5,0 ) , ( 4,0 ) , ( 3,0 ) , ( 2,0 ) , ( 1,0 ) , ( 0,0 ) 8/15

  29. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Proposition In a wqo ( X , � ) , if ∀ n { x ∈ X | � x � � n } is finite, then amortised ( g , n 0 ) -controlled bad sequences have a maximal length, denoted L a g , X ( n 0 ) . 8/15

  30. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] Proposition In a wqo ( X , � ) , if ∀ n { x ∈ X | � x � � n } is finite, then amortised ( g , n 0 ) -controlled bad sequences have a maximal length, denoted L a g , X ( n 0 ) . Theorem ( S. & Schnoebelen’12) def def For LCM Reachability, g ( x ) = x + 1 and n 0 = � v f � fit, and L a g , Q × N d ( n 0 ) ≈ F d + 1 ( n ) . 8/15

  31. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] ◮ x 0 , x 1 ,... is strongly controlled by g : N → N and n 0 ∈ N if � x 0 � � n 0 and ∀ i . � x i + 1 � � g ( � x i � ) 8/15

  32. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] ◮ x 0 , x 1 ,... is strongly controlled by g : N → N and n 0 ∈ N if � x 0 � � n 0 and ∀ i . � x i + 1 � � g ( � x i � ) Corollary In a wqo ( X , � ) , if ∀ n { x ∈ X | � x � � n } is finite, then strongly ( g , n 0 ) -controlled bad sequences have a maximal length, denoted L s g , X ( n 0 ) . 8/15

  33. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) [Cicho´ n & Tahhan Bittar’98] ◮ x 0 , x 1 ,... is strongly controlled by g : N → N and n 0 ∈ N if � x 0 � � n 0 and ∀ i . � x i + 1 � � g ( � x i � ) Corollary In a wqo ( X , � ) , if ∀ n { x ∈ X | � x � � n } is finite, then strongly ( g , n 0 ) -controlled bad sequences have a maximal length, denoted L s g , X ( n 0 ) and a maximal norm, denoted N s g , X ( n 0 ) . 8/15

  34. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Bad Sequences Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is bad if ∀ i < j . x i � x j ◮ x 0 , x 1 ,... is strongly controlled by g : N → N and n 0 ∈ N if � x 0 � � n 0 and ∀ i . � x i + 1 � � g ( � x i � ) Corollary In a wqo ( X , � ) , if ∀ n { x ∈ X | � x � � n } is finite, then ( g , n 0 ) -controlled bad sequences have a maximal length, denoted L s g , X ( n 0 ) and a maximal norm, denoted N s g , X ( n 0 ) . Theorem def def For LCM Reachability, g ( x ) = x + 1 and n 0 = � v f � fit, and L s g , Q × N d ( n 0 ) ≈ F d ( n ) . 8/15

  35. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Antichains Over a qo ( X , � ) ◮ x 0 , x 1 ,... is an antichain if ∀ i < j . x i ⊥ x j (i.e. xi � xj and xj � xi ) 9/15

  36. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Antichains Over a qo ( X , � ) ◮ x 0 , x 1 ,... is an antichain if ∀ i < j . x i ⊥ x j (i.e. xi � xj and xj � xi ) ◮ ( X , � ) wqo i ff it is well-founded and all antichains are finite 9/15

  37. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Antichains Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is an antichain if ∀ i < j . x i ⊥ x j (i.e. xi � xj and xj � xi ) ◮ ( X , � ) wqo i ff it is well-founded and all antichains are finite ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) 9/15

  38. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Controlled Antichains Over a qo ( X , � ) with norm � · � ◮ x 0 , x 1 ,... is an antichain if ∀ i < j . x i ⊥ x j (i.e. xi � xj and xj � xi ) ◮ ( X , � ) wqo i ff it is well-founded and all antichains are finite ◮ x 0 , x 1 ,... is amortised controlled by g : N → N and n 0 ∈ N if ∀ i . � x i � � g i ( n 0 ) Corollary In a wqo ( X , � ) , if ∀ n { x ∈ X | � x � � n } is finite, then amortised ( g , n 0 ) -controlled antichains have a maximal length, denoted W a g , X ( n 0 ) . 9/15

  39. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) 10/15

  40. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) ( 3,4 ) 10/15

  41. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) ( 3,4 ) ( 5,2 ) 10/15

  42. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) ( 3,4 ) ( 5,2 ) ( 4,3 ) 10/15

  43. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) ( 3,4 ) > ( 5,2 ) ( 4,2 ) ( 4,3 ) 10/15

  44. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) ( 3,4 ) > ( 5,2 ) ( 4,2 ) ( 4,3 ) ( 5,1 ) 10/15

  45. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > ( 3,4 ) ( 2,3 ) > ( 5,2 ) ( 4,2 ) ( 4,3 ) ( 5,1 ) 10/15

  46. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > ( 3,4 ) ( 2,3 ) > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 4,3 ) ( 5,1 ) 10/15

  47. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > ( 3,4 ) ( 2,3 ) > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) 10/15

  48. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > ( 3,4 ) ( 2,3 ) > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 1,4 ) 10/15

  49. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > ( 3,4 ) ( 2,3 ) > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 1,4 ) 10/15

  50. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > ( 3,4 ) ( 2,3 ) > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 0,4 ) ( 1,4 ) 10/15

  51. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > ( 3,4 ) ( 2,3 ) > > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 3,0 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 0,4 ) ( 1,4 ) 10/15

  52. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > > ( 3,4 ) ( 2,3 ) ( 1,1 ) > > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 3,0 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 0,4 ) ( 1,4 ) 10/15

  53. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > > ( 3,4 ) ( 2,3 ) ( 1,1 ) > > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 3,0 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 0,4 ) ( 1,4 ) Property Every branch is a strongly ( x �→ x + 1,4 ) -controlled antichain over N 2 . 10/15

  54. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > > ( 3,4 ) ( 2,3 ) ( 1,1 ) > > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 3,0 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 0,4 ) ( 1,4 ) Here, height is 3, hence ◮ maximal norm at most g 3 ( n 0 ) = n 0 + 3 = 7, ◮ length of the bad sequence at most ( 7 + 1 ) 2 = 64 10/15

  55. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > > ( 3,4 ) ( 2,3 ) ( 1,1 ) > > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 3,0 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 0,4 ) ( 1,4 ) Here, height is 3, hence ◮ maximal norm at most g 3 ( n 0 ) = n 0 + 3 = 7, ◮ length of the bad sequence at most ( 7 + 1 ) 2 = 64 10/15

  56. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Antichain Factorisation Example (strongly ( x �→ x + 1,4 ) -controlled bad sequence over N 2 ) ( 3,4 ) , ( 5,2 ) , ( 4,3 ) , ( 4,2 ) , ( 5,1 ) , ( 2,3 ) , ( 4,1 ) , ( 5,0 ) , ( 1,4 ) , ( 3,1 ) , ( 0,4 ) , ( 3,0 ) , ( 1,1 ) > > ( 3,4 ) ( 2,3 ) ( 1,1 ) > > > ( 5,2 ) ( 4,2 ) ( 4,1 ) ( 3,1 ) ( 3,0 ) ( 4,3 ) ( 5,1 ) ( 5,0 ) ( 0,4 ) ( 1,4 ) Here, height is 3, hence ◮ maximal norm at most g 3 ( n 0 ) = n 0 + 3 = 7, ◮ length of the bad sequence at most ( 7 + 1 ) 2 = 64 10/15

  57. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Factorisation Lemma Lemma Let ( X , � ) be a wqo with norm � . � : X → N monotone. Then g , X ( n 0 ) � g W s g , X ( n 0 ) ( n 0 ) . N s 11/15

  58. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Factorisation Lemma Lemma Let ( X , � ) be a wqo with norm � . � : X → N monotone. Then g , X ( n 0 ) � g W s g , X ( n 0 ) ( n 0 ) . N s 11/15

  59. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Width Function Theorem Informal statement W a g , Q × N d ( n 0 ) ≈ F d ( n ) in the case of LCMs. Proof ingredients 1. descent equation 2. normed reflections 3. subrecursive hierarchies 12/15

  60. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Width Function Theorem Informal statement W a g , Q × N d ( n 0 ) ≈ F d ( n ) in the case of LCMs. Proof ingredients 1. descent equation 2. normed reflections 3. subrecursive hierarchies 12/15

  61. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Width Function Theorem Informal statement W a g , Q × N d ( n 0 ) ≈ F d ( n ) in the case of LCMs. Proof ingredients 1. descent equation 2. normed reflections 3. subrecursive hierarchies 12/15

  62. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 1: Descent Equation amortised ( g , n 0 ) -controlled antichain x 0 , x 1 , x 2 , x 3 ,... over a wqo ( X , � ) : norms � xi � g 2 ( g ( n 0 )) = g 3 ( n 0 ) x 3 x 2 g 1 ( g ( n 0 )) = g 2 ( n 0 ) g 0 ( g ( n 0 )) = g 1 ( n 0 ) ⊥ ⊥ ⊥ ⊥ g 0 ( n 0 ) x 0 x 1 ⊥ ⊥ indices i 13/15

  63. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 1: Descent Equation amortised ( g , n 0 ) -controlled antichain x 0 , x 1 , x 2 , x 3 ,... over a wqo ( X , � ) : norms � xi � g 2 ( g ( n 0 )) = g 3 ( n 0 ) x 3 x 2 g 1 ( g ( n 0 )) = g 2 ( n 0 ) over the su ffi x x 1 , x 2 , x 3 ,..., ∀ i > 0, g 0 ( g ( n 0 )) = g 1 ( n 0 ) ⊥ ⊥ x 0 ⊥ x i ⊥ ⊥ g 0 ( n 0 ) x 0 x 1 ⊥ ⊥ indices i 13/15

  64. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 1: Descent Equation amortised ( g , n 0 ) -controlled antichain x 0 , x 1 , x 2 , x 3 ,... over a wqo ( X , � ) : norms � xi � g 2 ( g ( n 0 )) = g 3 ( n 0 ) x 3 x 2 g 1 ( g ( n 0 )) = g 2 ( n 0 ) over the su ffi x x 1 , x 2 , x 3 ,..., ∀ i > 0, g 0 ( g ( n 0 )) = g 1 ( n 0 ) ⊥ ⊥ ⊥ ⊥ def x i ∈ X ⊥ x 0 = { x ∈ X | x 0 ⊥ x } g 0 ( n 0 ) x 0 x 1 ⊥ ⊥ indices i 13/15

  65. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 1: Descent Equation amortised ( g , n 0 ) -controlled antichain x 0 , x 1 , x 2 , x 3 ,... over a wqo ( X , � ) : norms � xi � g 2 ( g ( n 0 )) = g 3 ( n 0 ) x 3 x 2 g 1 ( g ( n 0 )) = g 2 ( n 0 ) over the su ffi x x 1 , x 2 , x 3 ,..., ∀ i > 0, g 0 ( g ( n 0 )) = g 1 ( n 0 ) ⊥ ⊥ ⊥ ⊥ def x i ∈ X ⊥ x 0 = { x ∈ X | x 0 ⊥ x } g 0 ( n 0 ) x 0 � x i � � g i − 1 ( g ( n 0 )) x 1 ⊥ ⊥ indices i 13/15

  66. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 1: Descent Equation amortised ( g , n 0 ) -controlled antichain x 0 , x 1 , x 2 , x 3 ,... over a wqo ( X , � ) : norms � xi � g 2 ( g ( n 0 )) = g 3 ( n 0 ) x 3 x 2 g 1 ( g ( n 0 )) = g 2 ( n 0 ) over the su ffi x x 1 , x 2 , x 3 ,..., ∀ i > 0, g 0 ( g ( n 0 )) = g 1 ( n 0 ) ⊥ ⊥ ⊥ ⊥ def x i ∈ X ⊥ x 0 = { x ∈ X | x 0 ⊥ x } g 0 ( n 0 ) x 0 � x i � � g i − 1 ( g ( n 0 )) x 1 ⊥ ⊥ indices i W a 1 + W a g , X ( n 0 ) = max g , X ⊥ x 0 ( g ( n 0 )) x 0 ∈ X , � x 0 � � n 0 13/15

  67. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections r X Y Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X 14/15

  68. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections r X Y r r ( x ′ ) x ′ � X r x r ( x ) Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X 14/15

  69. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections r X Y r r ( x ′ ) x ′ � X � Y r x r ( x ) Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X 14/15

  70. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections r X Y r r ( x ′ ) x ′ � X � Y r x r ( x ) � x � X � r ( x ) � Y Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X 14/15

  71. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections r X Y r r ( x ′ ) x ′ � X � Y r x r ( x ) � x � X � r ( x ) � Y � Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X 14/15

  72. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X Fact If r : X → Y is a normed reflection, then for all g , n 0 W a g , X ( n 0 ) � W a g , Y ( n 0 ) . (if x 0 , x 1 ,... is an amortised ( g , n 0 ) -controlled antichain, then r ( x 0 ) , r ( x 1 ) ,... is as well) ◮ over-approximate W a g , X ⊥ x 0 ( g ( n 0 )) in the descent equation ◮ e.g. ( N d ) ⊥ v reflects into the disjoint sum N d − 1 · � 1 � i � d v ( i ) 14/15

  73. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X Fact If r : X → Y is a normed reflection, then for all g , n 0 W a g , X ( n 0 ) � W a g , Y ( n 0 ) . (if x 0 , x 1 ,... is an amortised ( g , n 0 ) -controlled antichain, then r ( x 0 ) , r ( x 1 ) ,... is as well) ◮ over-approximate W a g , X ⊥ x 0 ( g ( n 0 )) in the descent equation ◮ e.g. ( N d ) ⊥ v reflects into the disjoint sum N d − 1 · � 1 � i � d v ( i ) 14/15

  74. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Ingredient 2: Normed Reflections Definition Let ( X , � X ) and ( Y , � Y ) be qos with norms � . � X and � . � Y . A normed reflection is a function r : X → Y such that 1. ∀ x , x ′ ∈ X . x � X x ′ implies r ( x ) � Y r ( x ′ ) 2. ∀ x ∈ X . � r ( x ) � Y � � x � X Fact If r : X → Y is a normed reflection, then for all g , n 0 W a g , X ( n 0 ) � W a g , Y ( n 0 ) . (if x 0 , x 1 ,... is an amortised ( g , n 0 ) -controlled antichain, then r ( x 0 ) , r ( x 1 ) ,... is as well) ◮ over-approximate W a g , X ⊥ x 0 ( g ( n 0 )) in the descent equation ◮ e.g. ( N d ) ⊥ v reflects into the disjoint sum N d − 1 · � 1 � i � d v ( i ) 14/15

  75. Lossy Counter Machines Controlled Sequences Antichain Factorisation Width Function Theorem Outline lossy counter machines (LCM) reachability ◮ canonical Ackermann -complete problem ◮ complexity gap in fixed dimension d : F d -hard, in F d + 1 complexity using well-quasi-orders (wqo) ◮ strongly controlled bad sequences ◮ antichain factorisation ◮ width function theorem on the length of controlled antichains ◮ F d upper bounds for LCM reachability 15/15

  76. Complexity Classes Backward Coverability Subrecursive Functions Technical Appendix 16/15

  77. Complexity Classes Backward Coverability Subrecursive Functions Complexity Classes Beyond Elementary [S.’16] Multiply Recursive Fast-Growing Complexity F ω Primitive Recursive = Ackermann F 3 = Tower Elementary 17/15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend