the modal calculus hierarchy on restricted classes of
play

The modal -calculus Hierarchy on Restricted Classes of Transition - PowerPoint PPT Presentation

The modal -calculus Hierarchy on Restricted Classes of Transition Systems The modal -calculus Hierarchy on Restricted Classes of Transition Systems Luca Alberucci 1 Alessandro Facchini 2 1 IAM, University of Berne 2 Universities of Lausanne


  1. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Luca Alberucci 1 Alessandro Facchini 2 1 IAM, University of Berne 2 Universities of Lausanne and Bordeaux 1 April 5th 2008

  2. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction What is the modal µ -calculus ?

  3. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction What is the modal µ -calculus ? The modal µ -calculus... ... is an extension of modal logic allowing least and greatest fixpoint constructors for any (syntactically) monotone formula. containing ”all” extensions of modal logic with fixpoint constructors.

  4. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction What is the modal µ -calculus ? The modal µ -calculus... ... is an extension of modal logic allowing least and greatest fixpoint constructors for any (syntactically) monotone formula. containing ”all” extensions of modal logic with fixpoint constructors. ◮ PDL : � α ∗ � ψ = µ x .ψ ∨ � α � x ◮ CTL : EG ϕ = ν x .ϕ ∧ ✸ x and E ( ϕ U ψ ) = µ x .ψ ∨ ( ϕ ∧ ✸ x )

  5. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”:

  6. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”: µ x . p ∨ ✸ x

  7. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”: µ x . p ∨ ✸ x Allways ”p”:

  8. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”: µ x . p ∨ ✸ x Allways ”p”: ν x . p ∧ � x

  9. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”: µ x . p ∨ ✸ x Allways ”p”: ν x . p ∧ � x Allways eventually ”p”:

  10. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”: µ x . p ∨ ✸ x Allways ”p”: ν x . p ∧ � x Allways eventually ”p”: ν x . ( µ y . p ∨ ✸ y ) ∧ � x

  11. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”: µ x . p ∨ ✸ x Allways ”p”: ν x . p ∧ � x Allways eventually ”p”: ν x . ( µ y . p ∨ ✸ y ) ∧ � x There is a branch such that infinitely often ”p”:

  12. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Some expressible properties Eventually ”p”: µ x . p ∨ ✸ x Allways ”p”: ν x . p ∧ � x Allways eventually ”p”: ν x . ( µ y . p ∨ ✸ y ) ∧ � x There is a branch such that infinitely often ”p”: ν x .µ y . ( p ∧ ✸ x ) ∨ ✸ y

  13. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Fixpoint alternation depth ”ad”

  14. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Fixpoint alternation depth ”ad” Eventually ”p” and allways ”p”: ad( µ x . p ∨ ✸ x ) = ad( ν x . p ∧ � x ) = 1

  15. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Fixpoint alternation depth ”ad” Eventually ”p” and allways ”p”: ad( µ x . p ∨ ✸ x ) = ad( ν x . p ∧ � x ) = 1 There is a branch such that infinitely often ”p”: ad( ν x .µ y . ( p ∧ ✸ x ) ∨ ✸ y ) = 2

  16. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Fixpoint alternation depth ”ad” Eventually ”p” and allways ”p”: ad( µ x . p ∨ ✸ x ) = ad( ν x . p ∧ � x ) = 1 There is a branch such that infinitely often ”p”: ad( ν x .µ y . ( p ∧ ✸ x ) ∨ ✸ y ) = 2 ⇒ the internal fixpoint formula µ y . ( p ∧ ✸ x ) ∨ ✸ y uses the external fixpoint variable x as parameter.

  17. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Fixpoint alternation depth ”ad” Eventually ”p” and allways ”p”: ad( µ x . p ∨ ✸ x ) = ad( ν x . p ∧ � x ) = 1 There is a branch such that infinitely often ”p”: ad( ν x .µ y . ( p ∧ ✸ x ) ∨ ✸ y ) = 2 ⇒ the internal fixpoint formula µ y . ( p ∧ ✸ x ) ∨ ✸ y uses the external fixpoint variable x as parameter. Allways eventually ”p”: ad( ν x . ( µ y . p ∨ ✸ y ) ∧ � x ) = 1

  18. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction A formula with ad = 3: � ϕ ≡ µ x .ν y .µ z . ( d 1 ∧ ✸ x ) ∨ ( d 2 ∧ ✸ y ) ∨ ( d 3 ∧ ✸ z ) ∨ . . . � . . . ∨ ( c 1 ∧ � x ) ∨ ( c 2 ∧ � y ) ∧ ( c 3 ∧ � z ) ⇒ the subformula ϕ z uses the fixpoint variable y as parameter and the subformula ϕ y uses the most external fixpoint variable x as parameter.

  19. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction A formula with ad = 3: � ϕ ≡ µ x .ν y .µ z . ( d 1 ∧ ✸ x ) ∨ ( d 2 ∧ ✸ y ) ∨ ( d 3 ∧ ✸ z ) ∨ . . . � . . . ∨ ( c 1 ∧ � x ) ∨ ( c 2 ∧ � y ) ∧ ( c 3 ∧ � z ) ⇒ the subformula ϕ z uses the fixpoint variable y as parameter and the subformula ϕ y uses the most external fixpoint variable x as parameter. Syntactical modal µ -calculus hierarchy The alternation depth implies a ”strict” syntactical hierarchy on the class of all µ -formulae.

  20. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction The modal µ -calculus hierarchy Bradfield (1996): Stictness of semantical modal µ -calculus hierarchy The semantical modal µ -calculus hierarchy is strict on the class of all transition systems. ⇒ For each n there is a formula ϕ with ad( ϕ ) = n such that for all formulae ψ with ad( ψ ) < n we do not have for all transition systems T : ( T | = ϕ ⇔ T | = ψ ) .

  21. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction We answer the three following questions: Strictness of the semantical modal µ -calculus hierarchy on the class of all. . . 1. . . . reflexive transition systems? 2. . . . transitive and symmetric transition systems? 3. . . . transitive transition systems?

  22. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems Introduction Overview Introduction The modal µ -calculus Games for the modal µ -calculus The Hierarchy on Reflexive Transition Systems The Hierarchy on transitive and symmetric Transition Systems The Hierarchy on transitive Transition Systems

  23. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems The modal µ -calculus L µ -formulae ϕ :: ≡ p | ∼ p | ⊤ | ⊥ | ( ϕ ∧ ϕ ) | ( ϕ ∨ ϕ ) | ✸ ϕ | � ϕ . . . . . . | µ x .ϕ | ν x .ϕ where p , x ∈ P and x occurs only positively in η x .ϕ ( η = ν, µ ).

  24. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems The modal µ -calculus L µ -formulae ϕ :: ≡ p | ∼ p | ⊤ | ⊥ | ( ϕ ∧ ϕ ) | ( ϕ ∨ ϕ ) | ✸ ϕ | � ϕ . . . . . . | µ x .ϕ | ν x .ϕ where p , x ∈ P and x occurs only positively in η x .ϕ ( η = ν, µ ). ¬ ϕ is defined by using de Morgan dualities for boolean connectives, the usual modal dualities for ✸ and � , and ¬ µ x .ϕ ( x ) ≡ ν x . ¬ ϕ ( x )[ x / ¬ x ] and ¬ ν x .ϕ ( x ) ≡ µ x . ¬ ϕ ( x )[ x / ¬ x ] .

  25. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems The modal µ -calculus ◮ x ∈ bound( ϕ ) then ϕ x is subformula of ϕ of the form η x .α . ◮ ϕ well-named if no two distincts occurrences of fixed point operators in ϕ bind the same variable, no variable has both free and bound occurrences in ϕ and if for any subformula η x .α of ϕ we have that x appears once in α .

  26. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems The modal µ -calculus Syntactical modal µ -calculus hierarchy Let Φ ⊆ L µ . ν (Φ) is the smallest class of formulae such that: ◮ Φ , ¬ Φ ⊂ ν (Φ); ◮ If ψ ( x ) ∈ ν (Φ) and x occurs only positively, then ν x .ψ ∈ ν (Φ); ◮ If ψ, ϕ ∈ ν (Φ), then ψ ∧ ϕ, ψ ∨ ϕ, ✸ ψ, � ψ ∈ ν (Φ); ◮ If ψ, ϕ ∈ ν (Φ) and x is bound in ψ , then ϕ [ x /ψ ] ∈ ν (Φ)

  27. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems The modal µ -calculus Syntactical modal µ -calculus hierarchy Let Φ ⊆ L µ . ν (Φ) is the smallest class of formulae such that: ◮ Φ , ¬ Φ ⊂ ν (Φ); ◮ If ψ ( x ) ∈ ν (Φ) and x occurs only positively, then ν x .ψ ∈ ν (Φ); ◮ If ψ, ϕ ∈ ν (Φ), then ψ ∧ ϕ, ψ ∨ ϕ, ✸ ψ, � ψ ∈ ν (Φ); ◮ If ψ, ϕ ∈ ν (Φ) and x is bound in ψ , then ϕ [ x /ψ ] ∈ ν (Φ) similarly for µ (Φ)

  28. The modal µ -calculus Hierarchy on Restricted Classes of Transition Systems The modal µ -calculus For all n ∈ N , we define the class of µ -formulae Σ µ n and Π µ n inductively as follows: ◮ Σ µ 0 := Π µ 0 := L M ; ◮ Σ µ n +1 = µ (Π µ n ); ◮ Π µ n +1 = ν (Σ µ n ). ∆ µ n := Σ µ n ∩ Π µ n Alternation depth: ad( ϕ ) := inf { k : ϕ ∈ ∆ µ k +1 } .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend