the method of coefficients
play

The Method of Coefficients Ira M. Gessel Brandeis University - PDF document

The Method of Coefficients Ira M. Gessel Brandeis University Waltham, MA gessel@brandeis.edu Waterloo Workshop on Computer Algebra May 5, 2008 A simple example Consider the identity n m n 3 n 2 k ( 3) k =


  1. The Method of Coefficients Ira M. Gessel Brandeis University Waltham, MA gessel@brandeis.edu Waterloo Workshop on Computer Algebra May 5, 2008

  2. A simple example Consider the identity � n m � n �� 3 n − 2 k � � ( − 3) k = � . k m − k m/ 3 k =0 Note that in terms of hypergeometric series, this identity may be written � � − n, − 3 n + m, − m 3 � � 3 F 2 � − 3 2 n, − 3 2 n + 1 4 � 2 − n +1 − n +2  “ ” “ ” 3 3  M M if m = 3 M  “ 1 “ 2 ” ” = 3 3 M M  0 otherwise  (a result of George Andrews).

  3. We can prove this identity in the following way: We start with 1 + y 3 = (1 + y )(1 − y + y 2 ) (1 + y ) 2 − 3 y � � = (1 + y ) So (1 + y 3 ) n = (1 + y ) n � (1 + y ) 2 − 3 y � n � n � = (1 + y ) n � (1 + y ) 2 n − 2 k ( − 3 y ) k k k � n � � (1 + y ) 3 n − 2 k ( − 3 y ) k . = k k Equating coefficients of y m on both sides gives the identity � n m � n �� 3 n − 2 k � � ( − 3) k = � . k m − k m/ 3 k =0

  4. But how could we find this proof? We represent the binomial coefficients as � n � coefficients of binomial expansions: is the k coefficient of x k in (1 + x ) n and � 3 n − 2 k � is the m − k coefficient of y m − k in (1+ y ) 3 n − 2 k . It is convenient to represent these coefficients as constant terms, so the sum is (1 + x ) n (1 + y ) 3 n − 2 k � ( − 3) k CT x k y m − k k � k (1 + y ) 3 n (1 + x ) n � y � = CT − 3 x k (1 + y ) 2 y m k Now we apply the variable elimination rule: If f ( x ) is any power series and α is independent of x then ∞ ∞ f ( x ) x k α k = [ x k ] f ( x ) α k = f ( α ) . � � CT x k =0 k =0

  5. We apply this rule to � k (1 + y ) 3 n (1 + x ) n � y � CT − 3 x k (1 + y ) 2 y m k � k (1 + y ) 3 n (1 + x ) n � y � = CT y CT x − 3 y m x k (1 + y ) 2 k � n (1 + y ) 3 n � y = CT y 1 − 3 y m (1 + y ) 2 � (1 + y ) 2 − 3 y � n (1 + y ) 3 n = CT y y m (1 + y ) 2 � n (1 + y ) 3 n � 1 − y + y 2 = CT y y m (1 + y ) 2 � n (1 + y )(1 − y + y 2 ) � = CT y y m (1 + y 3 ) n = CT y y m � n � = . m/ 3

  6. The Method of Coefficients Based on G. P. Egorychev’s book Integralnoe predstavlenie i vyqislenie kombinatornyh summ To evaluate a binomial coefficient sum: 1. First we represent the binomial coefficients as constant terms: = CT (1 + x ) n = CT (1 + x ) n � n � x k x n − k k 1 = CT x k (1 − x ) n − k +1 1 = CT x n − k (1 − x ) k +1 2. We apply the variable elimination rule ∞ ∞ f ( x ) x k α k = [ x k ] f ( x ) α k = f ( α ) . � � CT k =0 k =0

  7. Another example �� 2 n − k � n � � ( − 2) k Evaluate . k n − r − k k We have �� 2 n − k � n � � ( − 2) k k n − r − k k ( − 2) k (1 + x ) n (1 + y ) 2 n − k � = CT x k y n − r − k k � k (1 + y ) 2 n (1 + x ) n � − 2 y � = CT x k y n − r 1 + y k � n (1 + y ) 2 n � 2 y = CT 1 − y n − r 1 + y � n (1 + y ) 2 n � 1 − y = CT y n − r 1 + y = CT (1 − y 2 ) n y n − r � n � = ( − 1) ( n − r ) / 2 ( n − r ) / 2

  8. Change of variables formulas The simplest change of variables formula is CT f ( x ) = CT f ( αx ) , where α is independent of x . More interesting is the linear change of variables formula 1 � x � CT f ( x ) = CT 1 + αxf 1 + αx To prove it, we need only consider the case f ( x ) = x k , k ∈ Z . The case k = 0 is clear. For k > 0 , x k CT (1 + αx ) k +1 = 0 . For k = − j < 0 , (1 + αx ) k +1 = CT (1 + x ) j − 1 x k CT = 0 . x j

  9. As a simple example of this change of variables formula, let � a �� � b � γ k S ( a, b, n, γ ) = k n − k k = CT (1 + γx ) a (1 + x ) b x n � � b � � − a, − n � � = 2 F 1 � γ . � n b − n + 1 Applying the change of variables formula with α = − 1 gives � a (1 − x ) n − a − b − 1 � 1 + ( γ − 1) x S ( a, b, n, γ ) = x n � a (1 + x ) n − a − b − 1 � 1 + (1 − γ ) x = ( − 1) n CT x n = ( − 1) n S ( a, n − a − b − 1 , n, 1 − γ ) . This is equivalent to a 2 F 1 linear transformation.

  10. A 2-variable change of variables formula (Gessel and Stanton) For any Laurent series f ( x, y ) , � � 1 x y CT 1 − xyf ( x, y ) = CT f 1 + y, . 1 + x To prove it we may assume that f ( x, y ) = x l y m . The left side is 1 if l = m ≤ 0 and 0 otherwise. The right side is x l y m CT (1 + x ) m . (1 + y ) l This is clearly 0 if l or m is positive. If l = − r and m = − s , with r, s ≥ 0 then it is CT (1 + x ) s (1 + y ) r � s �� r � = = δ r,s . x r y s r s

  11. As an application we’ll prove the identity ∞ (1 + x ) a (1 + y ) b � a + m �� b + l � � x l y m . = (1 − xy ) a + b +1 l m l,m =0 Applying the change of variables formula with f ( x, y ) = (1 + x ) a (1 + y ) b x l y m (1 − xy ) a + b we get x l y m (1 − xy ) a + b +1 = CT (1 + x ) a + m (1 + y ) b + l (1 + x ) a (1 + y ) b CT x l y m � a + m �� b + l � = l m

  12. General change of variables For more general change of variables formulas, it is convenient to work with residues rather than constant terms. The residue of the Laurent series f ( z ) , denoted res f ( z ) , is the coefficient of z − 1 in f ( z ) . We have the following change of variables formula: Let f ( z ) be a Laurent series and let g ( y ) be a power series, g ( y ) = g 1 y + g 2 y 2 + · · · , where g 1 � = 0 . Then res f ( z ) = res f ( g ( y )) g ′ ( y )) . (Note: There is a multivariable generalization, due to Jacobi, that we will not discuss.)

  13. The key fact in the proof is that the residue of a derivative is 0, and that a Laurent series with residue 0 is a derivative. Any Laurent series may be written as az − 1 + F ′ ( z ) for some Laurent series F ( z ) , so by linearity it is enough to prove the formula for f ( z ) = z − 1 and f ( z ) = F ′ ( z ) . For f ( z ) = F ′ ( z ) we have res F ′ ( z ) = 0 and res F ′ ( g ( y )) g ′ ( y ) = res F ( g ( y )) ′ = 0 . For f ( z ) = z − 1 we have res z − 1 = 1 and g ( y ) g ′ ( y ) = res g 1 + 2 g 2 y + · · · 1 res g 1 y + g 2 y 2 + · · · � 1 y + g 2 � = res + · · · g 1 = 1 .

  14. An application of the change of variables theorem Prove the identity � a + k �� a + 2 n + 1 � � n + a/ 2 � � = 2 2 n . k n − k n k As a hypergeometric series identity, this is a form of Kummer’s theorem, � � 1 + a, � − n = ( a + 2) n � 2 F 1 � − 1 . � ( 3 2 + a 2 + a + n 2 ) n The left side is (1 + y ) a +2 n +1 1 � CT x k (1 − x ) a +1 y n − k k � n (1 + y ) a +1 = CT (1 + y ) a +2 n +1 � (1 + y ) 2 y n (1 − y ) a +1 = CT (1 − y ) a +1 y � n +1 (1 + y ) a − 1 � (1 + y ) 2 = res (1 − y ) a +1 . y

  15. This suggests a change of variables z = y/ (1+ y ) 2 . The computation is easiest if we start with the right side: � n + a/ 2 � 1 2 2 n = res z n +1 (1 − 4 z ) a/ 2+1 n Then we make the change of variables z = y/ (1 + y ) 2 , so that 1 − 4 z = (1 − y ) 2 / (1 + y ) 2 and dz/dy = (1 − y ) / (1 + y ) 3 . We get � n +1 � (1 + y ) 2 � a/ 2+1 � (1 + y ) 2 1 − y res (1 − y ) 2 (1 + y ) 3 y � n +1 (1 + y ) a − 1 � (1 + y ) 2 = res (1 − y ) a +1 y

  16. A more complicated example (Gessel and Stanton) Prove the hypergeometric series identity � � � n − n, 1 ( 1 � 2 ) n � 27 2 � 1 2 F 1 = � 2 n + 3 4 (2 n + 3 4 2 ) n � 2 An equivalent binomial coefficient identity is � k � n � − 1 � − 1 �� 3 n + 1 � � 1 � 27 � � = ( − 1) n 2 2 2 . k n − k 4 4 n k The left side is � k (1 + x ) − 1 / 2 (1 + y ) 3 n +1 / 2 � 1 � CT x k y n − k 4 k = res (1 + 1 4 y ) − 1 / 2 (1 + y ) 3 n +1 / 2 . y n +1 This suggests the change of variables z = y/ (1 + y ) 3 .

  17. 1 The right side is res . With the � 1 − 27 z n +1 4 z change of variables z = y/ (1 + y ) 3 , we have dz/dy = (1 − 2 y ) / (1 + y ) 4 and 4 z = (1 + 1 4 y ) 1 / 2 (1 − 2 y ) � 1 − 27 , (1 + y ) 3 / 2 so 1 res � 1 − 27 z n +1 4 z = res (1 + y ) 3 n +3 (1 + y ) 3 / 2 4 y ) 1 / 2 (1 − 2 y ) · 1 − 2 y · (1 + 1 y n +1 (1 + y ) 4 = res (1 + 1 4 y ) − 1 / 2 (1 + y ) 3 n +1 / 2 . y n +1

  18. Comparison with Wilf’s Snake Oil Method To evaluate a sum S n = � k S n,k , we find the generating function S n x n = � � � S n,k x n . n n k Sometimes we need to adjust the parameters to get this to work. Let us look at our second example, �� 2 n − k � n � � n � � ( − 2) k = ( − 1) ( n − r ) / 2 . k n − r − k ( n − r ) / 2 k To apply the Snake Oil Method, we replace n − r with m , so the identity becomes � n � n �� 2 n − k � � � ( − 2) k = ( − 1) m/ 2 . k m − k m/ 2 k

  19. Now we can multiply the left side by x m and sum on m to get � n �� 2 n − k � � � ( − 2) k x m k m − k m k � n �� 2 n − k � � ( − 2) k x k + j = ( m = k + j ) k j j,k � n � � ( − 2) k x k (1 + x ) 2 n − k = k k � n = (1 + x ) n (1 − x ) n = (1 + x ) n � (1 + x ) − 2 x � n � = (1 − x 2 ) n = � ( − 1) m/ 2 . m/ 2 m

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend