the magic of cross spectrum measurements from dc to optics
play

The magic of cross-spectrum measurements from DC to optics E. - PowerPoint PPT Presentation

The magic of cross-spectrum measurements from DC to optics E. Rubiola FEMTO-ST Institute, CNRS and Universit de Franche Comt Outline 1. Theory Basics Rejection of the background noise Examples 2. Applications


  1. The magic of cross-spectrum measurements from DC to optics E. Rubiola FEMTO-ST Institute, CNRS and Université de Franche Comté Outline 1. Theory • Basics • Rejection of the background noise • Examples 2. Applications • Radio-astronomy, radiometry, and thermometry • AM-PM noise • Other applications home page http://rubiola.org

  2. 2 Part 1 – Theory

  3. 3 The main idea Instrument A x = a + c Σ CORRELATOR instr. a ( t ) noise c ( t ) DUT input Instrument B signal y = b + c Σ instr. b ( t ) noise • Two instruments measure independently the same physical quantity • Averaging must help to reject the instrument noise, and measure the statistical properties of the signal Notation: Fourier transform x(t) <=> X(ıf) = X’(ıf)+ ıX”(ıf)

  4. 4 Ergodicity FFT => sequence of discrete spectra spectra seq. analog sample no B d , S S(f) S j (f) S jk integer time integer frequency time j lock j=J & run k: S Jk is a spectrum k y c n run j & lock k=K: S jK is a time series e u q e r f white noise: S(f 1 ) and S(f 2 ), f 1 ≠ f 2 , are uncorrelated, hence given i, S k can be seen as the ensemble (at a given time) Ergodicity allows to interchange time-statistics with ensemble statistics. Sweeping the frequency, we get the statistical behavior of the time series. No need for forthcoming samples. Useful when S is a large-size average. flicker noise: need f 1 ≠≠ f 2 , for S(f 1 ) and S(f 2 ), to be uncorrelated (less deg. of freedom)

  5. 5 Single-channel spectrum Sxx gaussian X with independent Re and Im Spectrum � S xx � m = � XX ∗ � m = � ( X ′ + ıX ′′ ) × ( X ′ − ıX ′′ ) � m ( X ′ ) 2 + ( X ′′ ) 2 � � = m white, gaussian, avg = 0, var = 1/2 white, χ 2 , with 2m degrees of freedom avg = 1, var = 1/m � the S xx track on the dev 1 avg = FFT-SA shrinks as 1/m 1/2 m Normalization: in 1 Hz bandwidth var{X} = 1, and var{X’} = var{X”} = 1/2

  6. 6 Syx with correlated term C ≠ 0 (1) gaussian A, B, C with independent Re and Im Cross-spectrum � S yx � m = � Y X ∗ � m = � ( Y ′ + ıY ′′ ) × ( X ′ − ıX ′′ ) � m = � [ Y ′ X ′ + Y ′′ X ′′ ] + ı [ Y ′′ X ′ − Y ′ X ′′ ] � m X = ( A ′ + ıA ′′ ) + ( C ′ + ıC ′′ ) Y = ( B ′ + ıB ′′ ) + ( C ′ + ıC ′′ ) Expand and � � � Split � S yx � m = � S yx � m instr + � S yx � m mixed + � S yx � m � � � DUT = � B ′ A ′ + B ′′ A ′′ � m + ı � B ′′ A ′ + B ′ A ′′ � m � #1 � S yx � m � instr mixed = � B ′ C ′ + B ′′ C ′′ + C ′ A ′ + C ′′ A ′′ � m + ı � B ′′ C ′ − B ′ C ′′ + C ′′ A ′ − C ′ A ′′ � m #2 � � S yx � m � ( C ′ ) 2 + ( C ′′ ) 2 � � The useful signal C is real, the noise � #3 � S yx � m = � DUT m terms are complex. Take Re{S yx } (Yet there can be some risk!) Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ 2 hence var{A’} = var{A”} = var{B’} = var{B”} = 1/2, and var{C’} = var{C”} = κ 2 /2

  7. 7 Syx with correlated term C ≠ 0 (2) gaussian A, B, C with independent Re and Im = � B ′ A ′ + B ′′ A ′′ � m + ı � B ′′ A ′ + B ′ A ′′ � m � #1 � S yx � m � instr white, gaussian, white, gaussian, avg = 0, var = 1/4 avg = 0, var = 1/2m mixed = � B ′ C ′ + B ′′ C ′′ + C ′ A ′ + C ′′ A ′′ � m + ı � B ′′ C ′ − B ′ C ′′ + C ′′ A ′ − C ′ A ′′ � m � #2 � S yx � m � white, gaussian, avg = 0, var = κ 2 /4 white, gaussian, avg = 0, var = κ 2 /m white, gaussian, ( C ′ ) 2 + ( C ′′ ) 2 � avg = 0, var = 1/2 κ 2 � � #3 � S yx � m = � DUT m white, χ 2 , with 2m deg. of freedom avg = κ 2 , var = κ 4 /m � at large m the noise terms vanish, and the dev 1 #3 avg = S yx track on the FFT-SA shrinks as 1/m 1/2 m Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ 2 hence var{A’} = var{A”} = var{B’} = var{B”} = 1/2, and var{C’} = var{C”} = κ 2 /2

  8. 8 Detection, and noise-rejection law Gaussian X, Y, independent (C=0). Re and Im are independent Real part = � Y ′ X ′ + Y ′′ X ′′ � m white, gaussian � � ℜ � S yx � m avg = 0 + unbiased 1 + fastest convergence white, gaussian, var = 2 m – can’t use log scale (dB!) avg = 0, var = 1/4 Abs Real part white, � 1 � = | � Y ′ X ′ + Y ′′ X ′′ � m | one-sided gaussian, � �� � � ℜ � S yx � m avg = π m � 1 – biased � 1 2 − 1 white, gaussian, = good convergence var = avg = 0, var = 1/4 + can use log scale (dB!) π m Modulus � [ � Y ′ X ′ � m + � Y ′′ X ′′ � m ] 2 + [ � Y ′′ X ′ � m − � Y ′ X ′′ � m ] 2 | � S yx � | m = white, gaussian, avg = 0, var = 1/4 � π white, Rayleigh white, gaussian, avg = – biased 4 m avg = 0, var = 1/2m – slowest convergence � 1 � 1 − π + can use log scale (dB!) var = 4 m Normalization: in 1 Hz bandwidth var{X} = var{Y} = 1, and var{X’} = var{X”} = var{Y’} = var{Y”} = 1/2

  9. 9 Noise rejection, |Syx| and |Re{Syx}| Independent X and Y, var{X} = var{Y}= 1/2 |Syx| => Rayleigh distribution |Re{Syx}| => one-sided gaussian distrib. � π � 1 average average E { S } = E { S } = = 0.886/ √ m = 0.564/ √ m 4 m π m |<Syx> m | ~ – 5 log 10 (m) – 0.53 dB |<Re{Syx> m }| ~ – 5 log 10 (m) – 2.49 dB deviation deviation � 1 � 1 �� �� 1 � � � | S − E { S }| 2 � 1 − π 2 − 1 � | S − E { S }| 2 � E = E = 4 m m π = √ (0.215/m) = √ (0.182/m) the dev / avg ratio is independent of m the dev / avg ratio is independent of m � � � � π E {| S − E { S }| 2 } E {| S − E { S }| 2 } 4 = π − 1 = 2 − 1 = 0.523 = 0.756 E { S } E { S } The track thickness on the analyzer logarithmic scale is constant because the dev / avg ratio is independent of m

  10. 10 Example: C = 0 |Syx| Measurement of |Syx| &! m, 2 0 ...2 10 y m=32 c | � = � ( � /4m) � + � [(1- � /4)/m] x n y e 5 log(m) – 0.52 dB � + 1.83 dB S u | Sxx q e & r f Syx !'& C ≠ 0 |Syx| !'!& � – � [(1- � /4)/m] � – 3.21 dB ()*+,-.+ ! /01 ! 2" 3'456)7*89,8:;,"!!% !'!!& ! "! #! $! %! &!! &"! &#! &$! &%! "!! frequency m y c , n 2 0 e . . u . 2 q 10 e r f

  11. 11 Measurement (C ≠ 0), |Syx| #! #! #! #! m=1 g=0.32 m=2 g=0.32 m=4 g=0.32 m=8 g=0.32 |Sxx| |Sxx| |Sxx| |Sxx| |Syx| |Syx| # # # # |Syx| |Syx| !%# !%# !%# !%# |Scc| |Scc| |Scc| |Scc| !%!# !%!# !%!# !%!# frequency frequency frequency frequency !%!!# !%!!# !%!!# !%!!# ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! #! #! #! #! m=16 g=0.32 m=32 g=0.32 m=64 g=0.32 m=128 g=0.32 |Sxx| |Sxx| |Sxx| |Sxx| # # # # |Syx| |Syx| |Syx| |Syx| !%# !%# !%# !%# |Scc| |Scc| |Scc| |Scc| !%!# !%!# !%!# !%!# frequency frequency frequency frequency !%!!# !%!!# !%!!# !%!!# ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! #! #! #! # |Syx| m=256 g=0.32 m=512 g=0.32 m=1024 g=0.32 a v e r a g e |Sxx| |Sxx| |Sxx| # # # !%# |Syx| |Syx| |Syx| !%# !%# !%# d |Scc| |Scc| |Scc| e v i a t i o n !%!# !%!# !%!# &'()*+,)-./0 ! +)1 ! ## ! #!$2 ! !3#4 ! 05+678 m 9%:;5'<(0=*0,/*$!!> !%!# # #! #!! #!!! frequency frequency frequency !%!!# !%!!# !%!!# ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! Running the measurement, m increases S xx shrinks => better confidence level S yx decreases => higher single-channel noise rejection

  12. 12 Measurement (C ≠ 0), |Re{Syx}| #! #! #! #! m=1 g=0.32 m=2 g=0.32 m=4 g=0.32 m=8 g=0.32 |Sxx| |Sxx| |Sxx| |Sxx| # # # # |Re{Syx}| |Re{Syx}| |Re{Syx}| |Re{Syx}| !%# !%# !%# !%# |Scc| |Scc| |Scc| |Scc| !%!# !%!# !%!# !%!# frequency frequency frequency frequency !%!!# !%!!# !%!!# !%!!# ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! #! #! #! #! m=16 g=0.32 m=32 g=0.32 m=64 g=0.32 m=128 g=0.32 |Sxx| |Sxx| |Sxx| |Sxx| # # # # |Re{Syx}| |Re{Syx}| |Re{Syx}| |Re{Syx}| !%# !%# !%# !%# |Scc| |Scc| |Scc| |Scc| !%!# !%!# !%!# !%!# frequency frequency frequency frequency !%!!# !%!!# !%!!# !%!!# ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! #! #! #! # |Re{Syx}| m=256 g=0.32 m=512 g=0.32 m=1024 g=0.32 a v e r a g e |Sxx| |Sxx| |Sxx| # # # !%# |Re{Syx}| |Re{Syx}| |Re{Syx}| !%# !%# !%# d |Scc| |Scc| |Scc| e v i a t i o n !%!# !%!# !%!# &'()*+,)-./0 ! +)1 ! ## ! #!$2 ! !3#4 ! 05+6)789 m :%6;5'<(0=*0,/*$!!> !%!# # #! #!! #!!! frequency frequency frequency !%!!# !%!!# !%!!# ! "! #!! #"! $!! ! "! #!! #"! $!! ! "! #!! #"! $!! Running the measurement, m increases S xx shrinks => better confidence level S yx decreases => higher single-channel noise rejection

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend