the lhc machine prospects
play

The LHC Machine: prospects Massimo Giovannozzi CERN Beams - PowerPoint PPT Presentation

The LHC Machine: prospects Massimo Giovannozzi CERN Beams Department Introduction and a bit of history Upgrade options LHC upgrade MD studies Injectors upgrade The far future Acknowledgements: R. Assmann, H.


  1. The LHC Machine: prospects Massimo Giovannozzi CERN – Beams Department  Introduction and a bit of history  Upgrade options  LHC upgrade  MD studies  Injectors’ upgrade  The far future Acknowledgements: R. Assmann, H. Bartosik, E. Benedetto, O. Brüning, R. Calaga, S. Fartoukh, R. Garoby, W. Herr, J. Jowett, R. de Maria , E. Métral, Y. Papaphilippou, L. Rossi, E. Todesco, R. Tomás, M. Vretenar, F. Zimmermann et al. Massimo Giovannozzi - CERN

  2. Introduction - I ATLAS: High luminosity experiment.  Search for the Higgs boson(s). A Large Ion Collider Experiment  (ALICE): Ions. New phase of CMS matter expected (Quark-Gluon Plasma). Compact Muon Solenoid (CMS): High  luminosity experiment. Search for the Higgs boson(s). In this insertion is also located TOTEM for the measurement of the total proton- ATLAS proton cross-section and study elastic LHC-B scattering and diffractive physics. ALICE LHCb: Beauty quark  physics for precise measurements of CP violation and rare decays. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  3. LHC layout: the other insertions Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  4. Introduction - II Towards dispersion Separation/ricombination dipole suppressor and arc Absorber (neutral particles) Separation/ricombination dipole Low-beta quadrupoles (23 m away from IP) High luminosity insertions Interaction point Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  5. Introduction - IV High luminosity insertions: collision optics. Beta at interaction point equals 0.55 m. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  6. Few facts from optics max in the triplets depends on: In a drift L* space * Strength of the triplets Hence reducing * implies: Larger aperture triplets Larger strength Chromatic effects scale n -> potential with max issue for collimation performance Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  7. Nominal performance and beyond  The nominal LHC parameters allow to reach 10 34 cm -2 s -1  Some margin in bunch intensity was assumed originally: 1.15× 10 11 to 1.7 × 10 11 . This is the so-called ultimate intensity.  The corresponding ultimate luminosity is ~ 2.18×10 34 cm -2 s -1 .  Anything beyond this value requires a deep review of the LHC machine (and injectors!) Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  8. Figure-of-merit for an upgrade - I  The luminosity formula is the key ingredient: 2 N M f b rev r L F * 4 n  But:  Many hidden constraints between parameters  Not all the parameters are determined by the LHC machine  The formula gives the peak luminosity, the average is different Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  9. Figure-of-merit for an upgrade - II  Constraints between parameters: crossing angle 2 N M f 1 b rev r * L F / d F x c s 2 * * 4 d z s n x y 1 * 2 x  Luminosity saturates for round beams.  Flat beams can optimise the situation. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  10. Luminosity evolution  The luminosity decays because of proton burn-off.  Luminosity decay is proportional to peak luminosity!  Luminosity leveling is an important LHCb luminosity constant! Why? ingredient in LHC upgrade Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  11. Upgrade ideas (until 2010)  Assumptions (or common belief)  Lifetime of triplets under nominal conditions is few years (radiation due to debris) -> they should be replaced  Nominal parameters are probably tight and nominal luminosity might be difficult to achieve (triplets aperture)  Hence, two-stage approach:  Phase 1: “Consolidate” the machine with new triplets aiming at reaching ~ 2-3×10 34 cm -2 s -1 .  Phase 2: “Real” luminosity upgrade aiming at 10 35 cm -2 s -1 . . This includes a major upgrade of the detectors. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  12. Phase 1 in short  Rough summary of Phase 1 approach  Replace “only” triplets with larger aperture magnets to enable reaching smaller *.  Intense studies performed:  Minimum * achievable: ~ 30 cm  Limits have been highlighted in other parts of the machine -> much more elements than the triplets should be changed!  Very complex optical gymnastics in order to fulfill the correction of chromatic aberrations -> not much operational flexibility left. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN S. Fartoukh at Chamonix 2010 Workshop

  13. How many upgrades? Each upgrade will require a non-negligible time to recover from the stop and gain in INTEGRATED luminosity. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN Courtesy V. Shiltsev

  14. Upgrade ideas (after 2010) Data not  One single upgrade. Courtesy L. Rossi, approved by Mgt M. Lamont  The time horizon is Peak lumi Int. lumi 1000.00 based on the 1.2E+34 projection of actual 100.00 Integrated luminosity [fb -1 ] performance of the Peak Luminosity [cm -2 s -1 ] 1.0E+34 running LHC. 10.00 Shutdown 8.0E+33 Shutdown  For the injectors see 6.0E+33 1.00 later. 4.0E+33 0.10 2.0E+33 0.0E+00 0.01 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  15. Latest unofficial 10 year plan Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  16. Scope of High-Luminosity upgrade of LHC  Targets:  A peak luminosity of 5×10 34 cm -2 s -1 with leveling  An integrated luminosity of 250 fb -1 per year, enabling the goal of 3000 fb -1 in twelve years (nominal LHC is around 300 fb -1 in ten years). 34 35 1.E+35 1035 -no level Level at 5 10 Nominal 1.E+35 Luminosity (cm -2 s -1 ) 35 Luminosity (cm-2 s-1) 1035 - no levelling 8.E+34 8.E+34 34 Levelling at 5 10 6.E+34 6.E+34 4.E+34 4.E+34 Average no level 2.E+34 Average level 2.E+34 0.E+00 0.E+00 0 5 10 15 20 25 0 2 4 6 8 10 12 time (hours) time (hours) Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  17. * = 14 m in IR1 and IR5 Injection optics: Nominal arc (180m) in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  18. * = 60 cm in IR1 and IR5: “1111” Pre-squeezed optics: Nominal arc (180m) in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  19. * = 30 cm in IR1 and IR5: “2222” Intermediate squeezed optics: arc increased by a factor of 2 in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  20. Squeezed optics (round): * = 15 cm in IR1 and IR5: “4444” arc increased by a factor of 4 in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  21. x/y = 7.5/30 cm alternated in IR1 and IR5: “8228” * Squeezed optics (flat): arc increased by a factor of 2 or 8 in s45/56/81/12 depending on the * aspect ratio in IP1 and IP5 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  22. Injection optics: zoom from IP4 to IP5 (beam1) New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  23. Pre- squeezed optics “1111”: zoom from IP4 to IP5 (beam1)  The line IP4-IP5 can be made achromatic ( SD2 family close to 550 A, but still big margin on the SF1 circuit ) New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  24. Intermediate squeezed optics “2222”: zoom from IP4 to IP5 (beam1)  * is further squeezed at IP5 by a factor of 2 by rematching IR4 only.  The line IP4-IP5 is kept achromatic at ~ cst sextupole strength. New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  25. Flat squeezed optics “8228”: zoom from IP4 to IP5 (beam1) y (Q11  IP ) 1.25 × between the 12 y arc × * ) V cst strong SD sextupoles x (Q14  IP ) 1.25 × between the x arc × 9 strong SF’s  one missing * ) H cst at Q10 to complete 5 -pairs Equipping Q10 (MQML) with an MS becomes highly desirable for high arc New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend