the fermat cubic elliptic functions continued fractions
play

The Fermat cubic, elliptic functions, continued fractions, and a - PowerPoint PPT Presentation

2 y 1 0 -1 0 1 2 x -1 The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion Philippe Flajolet INRIA Rocq. (France) Grenoble, S eorie des Nombres February 14, 2007 eminaire de Th Based on joint


  1. 2 y 1 0 -1 0 1 2 x -1 The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion Philippe Flajolet INRIA Rocq. (France) Grenoble, S´ eorie des Nombres — February 14, 2007 eminaire de Th´ Based on joint work with Eric Conrad , Columbus, OH (USA). In S´ eminaire Lotharingien de Combinatoire vol 54, 44 pages Feb 2005: A LGO Sem. Rocquencourt; Apr 2005: SLC54, Lucelle. Feb 2007: UJF , Grenoble. 1

  2. 1 “ALGEBRAIC” CONTINUED FRACTIONS S (Stieltjes) J (Jacobi) 1 1 1 n ! · z n = � z tan z = , . 1 2 · z 2 z 2 n ≥ 0 1 − 1 − 1 · z − 2 2 · z 2 z 2 3 − 1 − 3 · z − ... z 2 5 − ... CF: Iterate X �→ 1 /X ; X = ⌊ X ⌋ + { X } . Here: f = f (0) + zf ′ (0) + z 2 “ { f } ”. (Irrationality of π (Lambert) and summation of divergent series (Euler). Also re- lated to orthogonal polynomials Pad´ e approximants, moment problems, etc.) Explicit CFs are very rare : From Perron, Wall, Chihara, etc, perhaps less than 100 continued fractions are known for special functions. 2

  3. ζ (3) = � 1 /n 3 is irrational. Theorem (Ap´ ery 1978): 6 ζ (3) = , with ̟ ( n ) := (2 n + 1)(17 n ( n + 1) + 5) . 1 6 ̟ (0) − 2 6 ̟ (1) − 3 6 ̟ (2) − ... 1 1 � (Stieltjes) ( n + z ) 3 = , 1 6 n ≥ 0 σ (0) − 2 6 σ (1) − 3 6 σ (2) − ... with Cf Berndt/Ramanujan. σ ( n ) = (2 n + 1)(2 z ( z + 1) + n ( n + 1) + 1) . 3

  4. Theorem (Conrad 2002): For a certain function sm : Z ∞ x 2 sm( u ) e − u/x du = , 1 · 2 2 · 3 2 · 4 x 6 0 1 + b 0 x 3 − 4 · 5 2 · 6 2 · 7 x 6 1 + b 1 x 3 − 7 · 8 2 · 9 2 · 10 x 6 1 + b 2 x 3 − ... b n = 2(3 n + 1)((3 n + 1) 2 + 1) , where and Z z » 1 – dt 3 , 2 3 , 4 3; z 3 sm( z ) = Inv (1 − t 3 ) 2 / 3 = Inv z · 2 F 1 . 0 4

  5. Plan: some cute combinatorics surrounding the functions — The Fermat cubic x 3 + y 3 = 1 and Dixonian functions — A first model related to P´ olya urns and branching processes — A second model of Dixonian function by permutations ⋆ based on parity constraints [cf Viennot, F ., Dumont] — A third model of Dixonian function by weighted Dyck paths, related to continued fractions, and permutations ⋆ based on patterns of order 3 [cf F .-Franc ¸ on] Side effects: An analytic-combinatorial approach to urn processes that are 2 × 2 balanced. 5

  6. 2 FERMAT CURVES: CIRCLE & CUBIC The Fermat curve F m is the complex algebraic curve x m + y m = 1 . Circle F 2 : Consider s ′ = c, c ′ = − s , with s (0) = 0 , c (0) = 1 . The transcendental functions s, c do parameterize the circle, s ( z ) 2 + c ( z ) 2 = 1 , ( s 2 + c 2 ) ′ = 2 ss ′ + 2 cc ′ = 2 sc − 2 cs = 0 . since R Also: inversion from abelian integral R ( z, y ) dz on F 2 : Z sin z dt p (1 − t 2 ) 1 / 2 = z, cos( z ) = 1 − sin( z ) 2 0 sin z 1 For combinatorialists: tan z = sec z = cos z enumerate alternating cos z , (aka up-and-down, zig-zag) permutations [D´ esir´ e Andr´ e, 1881]. 6

  7. The “complexity” of integral calculus over an algebraic curve depends on its (topological) genus. Sphere with 3 holes, g = 3 For Fermat curve F p , genus is 1 2 ( p − 1)( p − 2) . ⇒ g = 0 ; • F 2 = ⇒ g = 1 ; Normal forms of Weierstraß and Jacobi + Dixon; • F 3 = • F 4 = ⇒ g = 3 , . . . 7

  8. A clever generalization of sin , cos : the nonlinear system s ′ = c 2 , c ′ = − s 2 with s (0) = 0 , c (0) = 1 . We have: s ( z ) 3 + c ( z ) 3 = 1 : the pair � s ( z ) , c ( z ) � parametrizes F 3 . Follow Dixon (1890) and set: sm( z ) ≡ s ( z ) , cm( z ) ≡ c ( z ) . (See sn, cn by Jacobi, sl, cl for lemniscate.) z − 4 z 4 4! + 160 z 7 7! − 20800 z 10 10! + 6476800 z 13  sm( z ) = 13! − · · ·   1 − 2 z 3 3! + 40 z 6 6! − 3680 z 9 9! + 8880000 z 12 cm( z ) = 12! − · · · .   8

  9. Alfred Cardew Dixon Born: 22 May 1865 in Northallerton, Yorkshire, England Died: 4 May 1936 in Northwood, Middlesex, England Generally, ACD considers X 3 + Y 3 − 3 αXY = 1 . 9

  10. 2.1 A hypergeometric connection. One can make s ≡ sm and c ≡ cm somehow “explicit”. Start from the defining system and differentiate √ s ′ = c 2 s ′′ = 2 cc ′ s ′′ = − 2 cs 2 s ′′ = − 2 c ∂ E E = ⇒ = ⇒ = ⇒ s ′ . √ s ′ to integrate ( � Then “cleverly” multiply by ): s ′′ √ 2 3( s ′ ) 3 / 2 = − 2 R 3 s 3 + K. s ′ = − 2 s 2 s ′ = ⇒ � sm( z ) dt � 1 − sm( z ) 3 (1 − t 3 ) 2 / 3 = z, cm( z ) = 3 0 = Abelian integral over F 3 + incomplete Beta integral + hypergeometric 10

  11. Classical hypergeometric function: z 2 2 F 1 [ α, β, γ ; z ] := 1 + α · β 1! + α ( α + 1) · β ( β + 1) z 2! + · · · . γ γ ( γ + 1) Inv( f ) is the inverse of f w.r.t. composition: Inv( f ) = g if f ◦ g = g ◦ f = Id . Proposition: Function sm is defined by inversion, � z � 1 � dt 3 , 2 3 , 4 3; z 3 sm( z ) = Inv (1 − t 3 ) 2 / 3 = Inv z · 2 F 1 . 0 � 1 − sm 3 ( z ) . The function cm is then defined near 0 by cm( z ) = 3 11

  12. 3 A STARTLING FRACTION. From Eric van Fossen C ONRAD , PhD Columbus, OH, 2002. Z ∞ x 2 sm( u ) e − u/x du = , 1 · 2 2 · 3 2 · 4 x 6 0 1 + b 0 x 3 − 4 · 5 2 · 6 2 · 7 x 6 1 + b 1 x 3 − 7 · 8 2 · 9 2 · 10 x 6 1 + b 2 x 3 − ... b n = 2(3 n + 1)((3 n + 1) 2 + 1) . where 12

  13. Proof: Follow Stieltjes and Rogers. Cleverly introduce � ∞ sm n ( u ) e − u/x du. S n := 0 Then integration by parts shows that n ( n − 1)( n − 2) x 3 S n = . 1 + 2 n ( n 2 + 1) x 3 − n ( n + 1)( n + 2) x 3 S n +3 S n − 3 S n = ⇒ “Pump” out the continued fraction. Six J -fractions: sm , sm 2 , sm 3 , cm , cm · sm , cm · sm 2 : 1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 7 , 8 , 8 , . . . + Three S -fractions: sm , cm , sm · cm . 13

  14. 4 BALLS GAMES Cf. Th´ eorie analytique des probabilit´ es Laplace (1812). olya urn model. An urn contains black and white balls. At each P´ epoch, a ball in the urn is chosen at random. Described by a placement matrix. Here: 0 1 ❣ − ① ① @ − 1 2 → A , M 12 = ① − ❣ ❣ 2 − 1 → A history of length n [Franc ¸ on78] is any description of a legal sequence of n moves of the P´ olya urn. For instance ( n = 5 ): x − → yy − → yxx − → yyyx − → xxyyx − → xyyyyx , What are the “history numbers”? The sequence for (1 , 0) �→ (0 , ⋆ ) starts as 0 , 1 , 0 , 0 , 4 , 0 , 0 , 160 . Cf sm ? 14

  15. 4.1 Urns and Dixonian functions. Take the (autonomous, nonlinear) ordinary differential system dx dy dt = y 2 , dt = x 2 , with Σ : x (0) = x 0 , y (0) = y 0 , � x ( t ) , y ( t ) � parameterizes the “Fermat hyperbola”: y 3 − x 3 = 1 . For x 0 = 0 , y 0 = 1 , get trivial variants: smh( z ) = − sm( − z ) , cmh( z ) = cm( − z ) . 15

  16. Define a linear transformation δ acting on polynomials C [ x, y ] : δ [ x ] = y 2 , δ [ y ] = x 2 , δ [ u · v ] = δ [ u ] · v + u · δ [ v ] , (Cf the elegant presentation of Chen grammars by [Dumont96] and the “com- binatorial integral calculus” of Leroux–Viennot.) ( i ) Combinatorially , the n th iterate δ n [ x a y b ] is such that # histories from ( a 0 , b 0 ) to ( k, ℓ ) = coeff[ x k y ℓ ] δ n [ x a 0 y b 0 ] , ( ii ) Algebraically , the operator δ describes the “logical conse- x = y 2 , ˙ y = x 2 } : quences” of the differential system Σ = { ˙ δ n [ x a y b ] = d n dt n x ( t ) a y ( t ) b expressed in x ( t ) , y ( t ) , ⇒ H ( x ( t ) , y ( t ); z ) = x ( t + z ) a 0 y ( t + z ) b 0 ; set t = 0 . . . ♥ Taylor = 16

  17. ♥♥♥ ♥♥♥ Combinatorial Interpretation I Proposition: The EGFs of histories of the urn M 12 starting with one ball: and ending with balls . . . All of the other colour: sm( z ) cm( z ) = − sm( − z ) . 1 All of the original colour: cm( z ) = cm( − z ) . Homogeneous monomial differential systems ⇐ ⇒ k × k balanced urns . Note: Get full composition [=Gaussian], large deviations, etc. √ « 3 3 „ 1 P ( X n = 0) ∼ cρ − n , ρ = 6 π Γ n ≡ 1 (mod 3) . , 3 17

  18. Note: The knight’s moves of Bousquet-Melou & Petkovˇ sek. o----. o----. | | | | . . multiplicity p | | | | P=(p,q) o----.----. P o----.----. | | multiplicity q | | o o The OGF of walks that start at (1 , 0) and end on the horizontal axis is ” 2 ( − 1) i “ X ξ � i � ( x ) ξ � i +1 � ( x ) G ( x ) = , i ≥ 0 x 3 m “ 3 m where ξ , a branch of the (genus 0) cubic xξ − x 3 − ξ 3 = 0 is ξ ( x ) = x 2 X ” 2 m + 1 . m m ≥ 0 18

  19. 4.2 Continuous-time branching = Yule process. Foatons and Viennons live an exponential time and disintegrate. . . �→ ; �→ Proposition. Consider the Yule process with two types of parti- cles. The probabilities that particles are all of the second type at time t are X ( t ) = e − t smh(1 − e − t ) , Y ( t ) = e − t cmh(1 − e − t ) , depending on whether the system at time 0 is initialized with one particle of the first type ( X ) or of the second type ( Y ). 19

  20. Remarks on urn processes. For urn � � − α β , − α + β = γ − δ, γ − δ associate a partial differential operator: Γ = x 1 − α y β ∂ ∂x + x γ y 1 − δ ∂ ∂y . ❀ Develop a general theory of P´ olya Urn Processes [FlDuPu06]. ❀ Can characterize all six matrices such that e z Γ is expressible by elliptic functions [FlGaPe05]. One such model ∈ { sm , cm } . 20

  21. „ − 2 3 „ − 1 2 „ − 1 2 « « « A = B = C = , , , 4 − 3 3 − 2 2 − 1 „ − 1 3 „ − 1 3 „ − 1 4 « « « D = , E = , F = . 3 − 1 5 − 3 5 − 2 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend