the electroweak effective field theory from on shell
play

The electroweak effective field theory - PowerPoint PPT Presentation

The electroweak effective field theory from on-shell amplitudes (KMI) /


  1. 散乱振幅で理論的に探る電弱対称性の破れ The electroweak effective field theory from on-shell amplitudes 北原 鉄平 名古屋大学 素粒子宇宙起源研究所 (KMI) / 高等研究院 基研研究会 素粒子物理学の進展 2020 2020 年 9 月 4 日 , オンライン

  2. 「中間子の精密測定におけるア こちらをクリック 興味のある方は一緒に共同研究しましょう 本題に入る前に … フレーバーは出てきません グラフや実験結果は出てきません 最新のフレーバーのレビュートークは ノマリーの現状と新物理の識別」 於 物理学会第 75 回年次大会 ( 招待講演 ) , 京都大学セミナー hep-ph と hep-th の境界領域の研究です , Minkowski metric ( + , − , − , − ) D = 4 The electroweak effec@ve field theory from on-shell amplitudes 2 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

  3. Based on [1709.04891] Nima Arkani-Hamed, Tzu-Chen Huang, Yu-tin Huang Novel formalism [1809.09644] Yael Shadmi, Yaniv Weiss [1909.10551] Technion, scattering Gauthier Durieux, TK , Yael Shadmi, Yaniv Weiss amplitudes group [2008.09652] Gauthier Durieux, TK , Camila S. Machado, Yael Shadmi, Yaniv Weiss

  4. Introduction (1/2) Effective field theory (EFT) can be generally constructed by assuming field contents and Lorentz, global and gauge symmetries, e.g. , SMEFT, HEFT, HQET, SCET, … EFT is bottom-up and natural approach (when one does not discover any new resonance) General problems of (effective) Lagrangian treatment: Find nice operator basis: operator redundancy via field redefinitions and EOMs e.g. , Warsaw basis (dimension-six SMEFT) [Grzadkowski, Iskrzynski, Misiak, Rosiek '10] Gauge redundancy (=gauge-fixing dependence), which is canceled out at amplitude level (after the complicated calculations) The electroweak effec@ve field theory from on-shell amplitudes 4 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

  5. J6+er1m7fd3rtLmRUCkxnOWCYWEZKEU 5mi pGFrkgKI0YmUfX06o+vyFC0oz/VtucrFKUcBpTjJRGYfc2SJG6woiVP3bhaOCEyfr kVtnT+cvR36dR1X+bJ1ACpNQrj0YxALhMmCIJ4xAx4WBqOXa3+3RBj4A12sAfC e3yb+qNU0chqwC7t9e2jXAR8LpxF90MRF2P0TbDJcpIQrzJCUS8fO1apEQlGsz7OCQpIc4WuUkKW HKVErsra1B38pMkGxpnQiytY0/2OEqVSbtNI76wslO1aBf9XWxYqPl6VlOeFIhzfXxQXDKoMVhOCGyoIVmyrBcKC6rdCfIW03UrP0dImO 0vPxaX7tDxhu4v z85a+zogEPwEQyA 8ZgAr6DCzAD2OgZY2NinJofzG/m1Dy/32oaTc978E+YP+8AivrEsQ= </latexit> ClHicbZFda9swFIZlr9sy7yvZYDe9EQuDjHXBXyG9WCFtKOxmo4OlCcSJkRXZFZVlI8mFYPKL+m92t39T2XUhc3dAh5fn6Oj PVHOqFS2/dcwnxw8f a8 <latexit sha1_base64="Ujo+T7SfZOEH+Ycv rAPdoMlK4M=">A Introduction (2/2) Scattering amplitude (on-shell amplitude, modern amplitude method, or spinor-helicity formalism) is an alternative way to EFTs (will explain at on after next slide) Scattering amplitudes can be bootstrapped from Lorentz symmetry, locality and unitarity Advantages: No operator and gauge redundancies. Gauge invariance is manifest Bypassing Lagrangian, operators, and Feynman rules/diagrams Drastically simple results compared to Feynman methods h 12 i 4 e .g. , gg → ggg corresponds to sum of 25 diagrams. g , 3 + g , 4 + g , 5 + g ) = ig 3 M 5 (1 − g , 2 − s h 12 ih 23 ih 34 ih 45 ih 51 i n is impossible by the Feynman methods g [Mangano, Parke '91] The electroweak effec@ve field theory from on-shell amplitudes 5 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

  6. On-shell approach to the SMEFT Derive anomalous dimension matrix (one- and two-loop levels) [Cheung, Shen ’15; Bern, Parra-Martinez, Sawyer ’19, ’20; Elias Miro, Ingoldby, Riembau ’20; Jiang, Ma, Shu ’20] Derive non-interference theorem for the new physics operators [Azatov, Contino, Machado, Riva ’16; Craig, Jiang, Li, Sutherland ’20, Jiang, Shu, Xiao, Zheng ’20; Gu, Wang ‘20] Enumeration of independent massless operators (consistent with Hilbert series approach) [Shadmi, Weiss ’18; Ma, Shu, Xiao ’19; Falkowski ’19; Durieux, Machado ’19; Durieux, TK, Machado, Shadmi, Weiss ’20] Hilbert series [Henning, Lu, Melia, Murayama ’15, '17] Investigate the electroweak symmetry (relations from SU(2) L ×U(1) Y SSB) using massive scattering amplitudes [Christensen, Field ’18; Aoude, Machado ‘19; Christensen, Field, Moore, Pinto ’19; Durieux, TK, Shadmi, Weiss ’19; This talk Bachu, Yelleshpur ‘19] The electroweak effec@ve field theory from on-shell amplitudes 6 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

  7. Spinor-helicity formalism (massless scattering amplitudes) (1/2) reviews e.g ., [Elvang, Huang ’13, Dixon ’13; Schwartz ‘14] Massless particle is an irreducible representations of the Poincaré group; particle i = | p i , h i ⟩ is particle’s helicity h = ± 1/2, ± 1 2 , …, p h n M n ( p h 1 1 , p h 2 Massless n -pt amplitudes are given by (all particles are incoming) n ) Little-group (LG) is subgroup of the Lorentz group, which leaves invariant; p i → p i p i In , SO(2) U(1) LG for massless particle ≃ D = 4 Massless amplitudes are scaled by their helicities { } under U(1) LG transformation h 1 , h 2 , … M n ( p h 1 1 , …, p h n n ) → e 2i ξ ∑ h i M n ( p h 1 1 , …, p h n Little group scaling; n ) The electroweak effec@ve field theory from on-shell amplitudes 7 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

  8. ̂ Spinor-helicity formalism (massless scattering amplitudes) (2/2) Lorentz group irreducible representation symbol (A, B) . spinor-helicity formalism B = 1 A , ̂ 2 ( ̂ J ± i ̂ K ) undotted spinor 2 : (1/2, 0) | i ⟩ α → e − i ξ | i ⟩ α (under LG) λ i , α = u − ( p i ), ¯ v − ( p i ) ⟨ ij ⟩ = − ⟨ ji ⟩ · α → e + i ξ | i ] · · α (under LG) ˜ dotted spinor α 2 *: (0, 1/2) ⟨ ii ⟩ = [ ii ] = 0 λ i = u + ( p i ), ¯ v + ( p i ) | i ] α = p μ α = | i ⟩ α [ i | · p i , α · i σ μ , α · 4-vector p μ 2 × 2 *: (1/2, 1/2) α = p 2 det p i , α · i = 0 α i constrained | ζ ⟩ α [ i | · α α = ε μ ,+ ε + σ μ , α · α = 2 4-vector i , α · i ⟨ i ζ ⟩ ε μ ,± polarization vector auxiliary spinor ζ i p i ⋅ ε ± | i ⟩ α [ ζ | · i = 0, ε ± i ⋅ ( ε ± i )* = − 1 α α = ε μ , − ε − σ μ , α · α = 2 i , α · ∑ ε μ , λ ( ε ν , λ i )* = − η μν i [ i ζ ] i λ =± … … … The electroweak effec@ve field theory from on-shell amplitudes 8 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

  9. massless → massive [Kleiss, Stirling ’85; Dittmaier ’98; Cohen, Elvang, Kiermaier ‘10] formalize/generalize for any mass and spin particles [1709.04891] Arkani-Hamed, Huang, Huang

  10. Massive-spinor formalism (1/4) [Arkani-Hamed, Huang, Huang ‘17] p i , α · α p 0 i + p 3 p 1 i − ip 2 i ) 2 − ( p 1 i ) 2 − ( p 2 i ) 2 − ( p 3 i i = ( p 0 i ) 2 α = det p i ⋅ σ = det p i , α · p 1 i + ip 2 p 0 i − p 3 i i = m 2 > 0 = p 2 i = 0 : rank 1 → product of two vectors rank 2 → sum of two products of two vectors p i , α · α α ≡ ∑ α = | i 1 ⟩ α [ i 1 | · α + | i 2 ⟩ α [ i 2 | · | i I ⟩ α [ i I | · α = | i ⟩ α [ i | · p i , α · p i , α · α α I =1,2 In , SO(3) SU(2) LG for massive particles; leaves invariant; ≃ α → p i , α · D = 4 p i , α · p i , α · α α Amplitudes are transformed by SU(2) LGs (for massive external particles) | i I ⟩ , | i I ] Bold spinors carry the SU(2) LG index I = 1,2 The electroweak effec@ve field theory from on-shell amplitudes 10 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

  11. CfHicbZFNSwMxEIaz63f9qnr0YLAKSrHsVlEvgujFYwWrQreU2XTahmazS5IV69pf4T/z5k/xIqa1SG0dCLy8 0ySmQkTwbXxvA/HnZmdm19YXMotr6yurec3Nu91nCqGVRaLWD2GoF wiVXDjcDHRCFEocCHsHs9yD8 odI8lneml2A9grbkLc7AWKuRfwtCbHOZJREYxZ/7EAQ0DFA2f53cBQU6QfmW8v5SR pOUp6l/Om7XouN7KUfKJBtgXRY+Ho0bjXyBa/kDYNOC38kCmQUlUb+PWjGLI1QGiZA65rvJa egTKcCeznglRjAqwLbaxZKSFCXc+Gw+vTfes0aStW9khDh+54RQaR1r0otKTtoqMncwPzv1wtNa3zesZlkhqU7OehViqoielgE7TJFTIjelYAU9z+lbIOKGDG7itnh+BPtjwt7s l/7hUvj0pXF6NxrFItskuOSA+OSOX5IZUSJUw8unsOAfOofPl7rlF9+gHdZ1RzRb5E+7pNy awaU=</latexit> ⃗ <latexit sha1_base64="tOFX2CrFq96zx5VmQv1rQDt9d1A=">A Massive-spinor formalism (2/4) One can use the SU(2) LG rotation for the spin-quantization axis Convenient choice (for any spin particles): Arbitrary spin polarization can be spin axis I = 1 given by two opposite spin states I = 2 ✓ ◆ ✓ ◆ ✓ ◆ a 1 0 p = a | + z i + b | � z i = a + b b 0 1 In this choice, in high energy limit, spinor corresponds to positive (negative) I = 1 ( I = 2) helicities Any choice of spin-quantization axis is possible in general (“SU(2) LG covariant”) The electroweak effec@ve field theory from on-shell amplitudes 11 / 24 Teppei Kitahara : Nagoya University, PPP2020, September 4, 2020, online talk

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend