the early time expansion of the heat kernel
play

The Early Time Expansion of the Heat Kernel Stefan Lippoldt - PowerPoint PPT Presentation

Motivation & Introduction Heat Kernel in FRG Early Time Expansion The Early Time Expansion of the Heat Kernel Stefan Lippoldt November 8, 2016 1 / 15 Motivation & Introduction Heat Kernel in FRG Early Time Expansion Motivation


  1. Motivation & Introduction Heat Kernel in FRG Early Time Expansion The Early Time Expansion of the Heat Kernel Stefan Lippoldt November 8, 2016 1 / 15

  2. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Motivation & Introduction Heat Kernel origin: dissipation of heat arises naturally in many branches of mathematical physics specific tool for the analysis of the spectrum of a Laplacean (so far) the only tool for the evaluation of the flow equation on a generic(!) curved background within a curvature expansion 2 / 15

  3. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Dissipation of Heat time evolution of heat distribution u ( x , s ) is described by initial condition: u ( x , s ց 0 ) = u 0 ( x ) PDE: ∂ s u ( x , s ) = − ∆ u ( x , s ) the unique solution reads � u ( x , s ) = e − s ∆ u 0 ( x ) = e − s ∆ δ ( x − y ) u 0 ( y ) y � �� � Heat Kernel � = K ( x , y ; s ) u 0 ( y ) y 3 / 15

  4. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Heat Kernel: K ( x , y ; s ) = e − s ∆ δ ( x − y ) Definition as a solution to the heat equation initial condition: K ( x , y ; s ց 0 ) = δ ( x − y ) PDE: ∂ s K ( x , y ; s ) = − ∆ K ( x , y ; s ) using momentum representation of δ ( x − y ) we get � � ( 2 π ) d e i p ( x − y ) = d d p d d p ( 2 π ) d e − sp 2 + i p ( x − y ) K ( x , y ; s ) = e − s ∆ = e − ( x − y ) 2 4 s ( 4 π s ) d / 2 4 / 15

  5. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Heat Kernel in FRG FRG in Position Space in FRG we have to calculate a functional trace: � � (Γ ( 2 ) ∂ k Γ k = 1 + R k ) − 1 ∂ k R k 2 Tr k What does “Tr” mean? ⇒ It is the trace over the considered space of functions � appearing in the path integral ( D ϕ ): � � � ¯ Φ n ( x ) M ( x , y )Φ n ( y ) Tr M = x y n for example in flat space: � � � � � ( 2 π ) d e − i px f (∆) δ ( x − y ) e i py = d d p d d p ( 2 π ) d f ( p 2 ) Tr f (∆) = x y x ∞ � � z ( d − 2 ) / 2 = d z ( 4 π ) d / 2 Γ( d / 2 ) f ( z ) x 0 5 / 15

  6. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Laplace Transform consider a function of a positive argument f : R + → R ∞ � Laplace Transform ˜ d s ˜ f ( s ) e − sz f : R + → R : f ( z ) = 0 ∞ � d s s x − 1 e − as 1 e − sz , for example: ( z + a ) x = a , x > 0 Γ( x ) 0 generally one can show: ∞ ∞ � d s s − x ˜ � 1 d z z x − 1 f ( z ) f ( s ) = Γ( x ) 0 0 ∞ � d s s n ˜ f ( s ) = ( − 1 ) n lim z ց 0 f ( n ) ( z ) 0 6 / 15

  7. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Heat Kernel in FRG simpler form of the trace: � � � � � � � � ¯ Φ n ( y )¯ Φ n ( x ) M ( x , y )Φ n ( y )= Φ n ( x ) Tr M = tr M ( x , y ) x y x y n n � = tr [ M ( x , y )] y = x x for example in flat space: e − s ∆ δ ( x − y ) = e − ( x − y ) 2 / ( 4 s ) ( 4 π s ) d / 2 ∞ � � � d s ˜ f ( s )[ e − s ∆ δ ( x − y ) Tr f (∆) = [ f (∆) δ ( x − y )] y = x = ] y = x � �� � x x 0 Heat Kernel ∞ ∞ � � � � ˜ f ( s ) z ( d − 2 ) / 2 = ( 4 π s ) d / 2 = ( 4 π ) d / 2 Γ( d / 2 ) f ( z ) d s d z x x 0 0 7 / 15

  8. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Early Time Expansion The Coordinate independent Delta Distribution want to generalize the heat kernel to curved spaces partial to covariant derivatives: ∆ = − D µ D µ What to do with δ ( x − y ) ? ⇒ δ ( x , y ) is unit oprator in the considered space of functions: � � Φ n ( x )¯ Φ n ( y ) δ ( x , y )Φ( y ) = Φ( x ) ⇔ δ ( x , y ) = y n for example in flat space: � d d p ( 2 π ) d e i px e − i py δ ( x − y ) = 8 / 15

  9. Motivation & Introduction Heat Kernel in FRG Early Time Expansion The World Function What to do with ( x − y ) 2 ? ⇒ geodesic distance d 2 g ( x , y ) introduce the “world function” σ ( x , y ) for convenience: d 2 g ( x , y ) 2 g µν ( D µ σ )( D ν σ ) = σ, 1 σ ( x , y ) := , 2 D µ D ν σ = g µν D µ σ = 0 , for example in flat space: 2 η µν � η µρ ( x − y ) ρ �� η νκ ( x − y ) κ � σ ( x , y ) = ( x − y ) 2 1 = σ ( x , y ) , , 2 ∂ µ η νρ ( x − y ) ρ = η µν η µρ ( x − y ) ρ = 0 , 9 / 15

  10. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Heat Kernel in Curved Spaces generalized heat kernel: K ( x , y ; s ) = e − s ∆ δ ( x , y ) for example: a scalar on the one-sphere S 1 the metric g ϕϕ = r 2 , Laplacean ∆ = − 1 r 2 ∂ 2 ϕ eigenfunctions of the Laplacean: � { 1 } , n = 0 f n , l ( ϕ ) = e l · i n ϕ 2 π r , n ∈ N 0 , l ∈ D n = , √ {− 1 , 1 } , n > 0 λ n = n 2 ∆ f n , l = λ n · f n , l , r 2 Heat Kernel: ∞ e − sn 2 / r 2 e l · i n ϕ 1 e − l · i n ϕ 2 � � K ( ϕ 1 , ϕ 2 ; s ) = √ √ 2 π r 2 π r n = 0 l ∈ D n � � � = e − σ ( ϕ 1 ,ϕ 2 ) / ( 2 s ) σ ( n ) ( ϕ 1 ,ϕ 2 ) − σ ( ϕ 1 ,ϕ 2 ) / ( 2 s ) e − √ 4 π s n ∈ Z σ ( n ) corresponds to d ( n ) = n · ( 2 π r ) + d g g 10 / 15

  11. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Early Time Expansion one can show that the Heat Kernel allows for an early time expansion of the form: ∞ σ ( x , y ) � e 2 s s n A n ( x , y ) K ( x , y ; s ) = ( 4 π s ) d / 2 n = 0 the A n ( x , y ) are the expansion coefficients (to be determined) this form misses topological properties of the manifold 11 / 15

  12. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Field Insertions want to evaluate flow equation on a generic curved background need to expand the effective action in powers of the fields, and need to perform a derivative expansion ∞ � 1 use the algebraic relation: e X Q = n ! [ X , Q ] n e X n = 0 ∞ � n ! [∆ , Q ] n f ( n ) (∆) 1 implying: f (∆) Q = n = 0 traces we are interested in are of the following form: � Q µ 1 ...µ m D µ 1 . . . D µ m e − s ∆ � Tr 12 / 15

  13. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Coincidence Limit of the A n for the evaluation of the flow equation, all we need are the coincidence limits of derivatives of the D µ 1 . . . D µ m A n these limits can be calculated recursively, by plugging the ansatz of the heat kernel into its defining equation the coincidence limits then correspond to curvature monomials: D µ 1 . . . D µ m A n ∼ R ( n + m ) / 2 to linear order in the curvature we get: D µ D ν A 0 = R µν 6 ✶ + 1 A 1 = R A 0 = ✶ , D µ A 0 = 0 , 2 F µν , 6 ✶ 13 / 15

  14. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Summary heat kernel techniques allow for computations in generic curved spaces (within a curvature expansion) the necessary coefficients can be calculated recursively early time expansion misses topological effects derivative and polynomial expansion of fields is necessary 14 / 15

  15. Motivation & Introduction Heat Kernel in FRG Early Time Expansion Thank you for your attention! 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend