the double copy of a point charge
play

The Double Copy of a Point Charge Ricardo Monteiro Queen Mary - PowerPoint PPT Presentation

The Double Copy of a Point Charge Ricardo Monteiro Queen Mary University of London QCD meets Gravity UCLA, 12 December 2019 Based on arXiv:1912.02177 with Kwangeon Kim, Kanghoon Lee, Isobel Nicholson, David Peinador Veiga Ricardo Monteiro


  1. The Double Copy of a Point Charge Ricardo Monteiro Queen Mary University of London QCD meets Gravity UCLA, 12 December 2019 Based on arXiv:1912.02177 with Kwangeon Kim, Kanghoon Lee, Isobel Nicholson, David Peinador Veiga Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 1 / 16

  2. Motivation Simple gauge theory solution: Coulomb. Schwarzschild is natural double copy of Coulomb. Full story? Dilaton? Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 2 / 16

  3. Motivation Simple gauge theory solution: Coulomb. Schwarzschild is natural double copy of Coulomb. Full story? Dilaton? Double-copy structure of Einstein equations? double copy double field theory doubled geometry ( x µ , ˜ x µ ) Gravity = YM × YM Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 2 / 16

  4. Double copy of Coulomb: perturbative approach Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 3 / 16

  5. Gravity ∼ (Yang-Mills) 2 Scattering amplitudes [Kawai, Lewellen, Tye ’86; Bern, Carrasco, Johansson ’08; . . . ] µ = e ik · x ǫ µ T a , A a YM states: ǫ µ has D − 2 dof. Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 4 / 16

  6. Gravity ∼ (Yang-Mills) 2 Scattering amplitudes [Kawai, Lewellen, Tye ’86; Bern, Carrasco, Johansson ’08; . . . ] µ = e ik · x ǫ µ T a , A a YM states: ǫ µ has D − 2 dof. NS-NS gravity states: H µν = e ik · x ε µν , ε µν = ǫ µ ˜ ǫ ν or linear comb. ( D − 2 ) 2 dof: graviton h µν + dilaton φ + B-field B µν . Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 4 / 16

  7. Gravity ∼ (Yang-Mills) 2 Scattering amplitudes [Kawai, Lewellen, Tye ’86; Bern, Carrasco, Johansson ’08; . . . ] µ = e ik · x ǫ µ T a , A a YM states: ǫ µ has D − 2 dof. NS-NS gravity states: H µν = e ik · x ε µν , ε µν = ǫ µ ˜ ǫ ν or linear comb. ( D − 2 ) 2 dof: graviton h µν + dilaton φ + B-field B µν . A grav ( ε µν ) = A YM ( ǫ µ ǫ µ i ) ⊗ dc A YM (˜ i ) Interactions i Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 4 / 16

  8. Gravity ∼ (Yang-Mills) 2 Scattering amplitudes [Kawai, Lewellen, Tye ’86; Bern, Carrasco, Johansson ’08; . . . ] µ = e ik · x ǫ µ T a , A a YM states: ǫ µ has D − 2 dof. NS-NS gravity states: H µν = e ik · x ε µν , ε µν = ǫ µ ˜ ǫ ν or linear comb. ( D − 2 ) 2 dof: graviton h µν + dilaton φ + B-field B µν . A grav ( ε µν ) = A YM ( ǫ µ ǫ µ i ) ⊗ dc A YM (˜ i ) Interactions i Strings insight: closed string ∼ (‘left’ open string) × (‘right’ open string) Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 4 / 16

  9. Gravity ∼ (Yang-Mills) 2 Scattering amplitudes [Kawai, Lewellen, Tye ’86; Bern, Carrasco, Johansson ’08; . . . ] µ = e ik · x ǫ µ T a , A a YM states: ǫ µ has D − 2 dof. NS-NS gravity states: H µν = e ik · x ε µν , ε µν = ǫ µ ˜ ǫ ν or linear comb. ( D − 2 ) 2 dof: graviton h µν + dilaton φ + B-field B µν . A grav ( ε µν ) = A YM ( ǫ µ ǫ µ i ) ⊗ dc A YM (˜ i ) Interactions i Strings insight: closed string ∼ (‘left’ open string) × (‘right’ open string) Perturbative classical solutions First map free solutions (linear). Then correct solutions in double-copy-ish perturbation theory. × ∼ Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 4 / 16

  10. Double copy for Coulomb? Linearised “fat graviton”: [Luna, RM, Nicholson, Ochirov, O’Connell, White, Westerberg 16] � h µν − 1 � H µν = 2 h + P µν [ h ] + B µν + P µν [ φ ] ( graviton + B-field + dilaton ) ( P µν is coord. space projector) Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 5 / 16

  11. Double copy for Coulomb? Linearised “fat graviton”: [Luna, RM, Nicholson, Ochirov, O’Connell, White, Westerberg 16] � h µν − 1 � H µν = 2 h + P µν [ h ] + B µν + P µν [ φ ] ( graviton + B-field + dilaton ) ( P µν is coord. space projector) µ = − q a u µ = ( 1 , 0 , 0 , 0 ) , ∂ µ q a = 0 . A a Coulomb usual gauge: r u µ H µν = M Natural double copy: r u µ u ν both graviton and dilaton. [also Goldberger, Ridgway 16] Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 5 / 16

  12. Double copy for Coulomb? Linearised “fat graviton”: [Luna, RM, Nicholson, Ochirov, O’Connell, White, Westerberg 16] � h µν − 1 � H µν = 2 h + P µν [ h ] + B µν + P µν [ φ ] ( graviton + B-field + dilaton ) ( P µν is coord. space projector) µ = − q a u µ = ( 1 , 0 , 0 , 0 ) , ∂ µ q a = 0 . A a Coulomb usual gauge: r u µ H µν = M Natural double copy: r u µ u ν both graviton and dilaton. [also Goldberger, Ridgway 16] µ = q a k 2 = 0 . A a Coulomb different gauge: r k µ k = dt + dr , h µν = 2 M Natural double copy: k µ k ν exact Schwarzschild! r [RM, O’Connell, White 14] Kerr-Schild double copy. Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 5 / 16

  13. Double copy for Coulomb? Linearised “fat graviton”: [Luna, RM, Nicholson, Ochirov, O’Connell, White, Westerberg 16] � h µν − 1 � H µν = 2 h + P µν [ h ] + B µν + P µν [ φ ] ( graviton + B-field + dilaton ) ( P µν is coord. space projector) µ = − q a u µ = ( 1 , 0 , 0 , 0 ) , ∂ µ q a = 0 . A a Coulomb usual gauge: r u µ H µν = M Natural double copy: r u µ u ν both graviton and dilaton. [also Goldberger, Ridgway 16] µ = q a k 2 = 0 . A a Coulomb different gauge: r k µ k = dt + dr , h µν = 2 M Natural double copy: k µ k ν exact Schwarzschild! r [RM, O’Connell, White 14] Kerr-Schild double copy. Both consistent with ‘convolution’ idea [Anastasiou, Borsten, Duff, Hughes, Nagy 14] : A a a ∗ A ˙ a µ ∗ inv (Φ) a ˙ ( 1 / r ) ∗ inv ( 1 / r ) ∗ ( 1 / r ) = ( 1 / r ) � ν Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 5 / 16

  14. Double copy for Coulomb: JNW solution Clue from momentum states: take polarisations ǫ µ , ˜ ǫ µ . ǫ · k = ˜ ǫ · k = 0 Simplest double copy: ε µν = ǫ µ ˜ ǫ ν . Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 6 / 16

  15. Double copy for Coulomb: JNW solution Clue from momentum states: take polarisations ǫ µ , ˜ ǫ µ . ǫ · k = ˜ ǫ · k = 0 ǫ · q = q 2 = 0 Simplest double copy: ε µν = ǫ µ ˜ ǫ ν . ǫ · q = ˜ ∆ µν = η µν − k µ q ν + k ν q µ Why not ǫ ( µ ˜ ǫ ν ) , ǫ [ µ ˜ ǫ ν ] , ǫ · ˜ ǫ ∆ µν ? k · q Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 6 / 16

  16. Double copy for Coulomb: JNW solution Clue from momentum states: take polarisations ǫ µ , ˜ ǫ µ . ǫ · k = ˜ ǫ · k = 0 ǫ · q = q 2 = 0 Simplest double copy: ε µν = ǫ µ ˜ ǫ ν . ǫ · q = ˜ ∆ µν = η µν − k µ q ν + k ν q µ Why not ǫ ( µ ˜ ǫ ν ) , ǫ [ µ ˜ ǫ ν ] , ǫ · ˜ ǫ ∆ µν ? k · q General: graviton + B-field + dilaton. � ǫ ν ) − ∆ µν � ǫ ν ] + C ( φ ) ∆ µν + C ( B ) ǫ [ µ ˜ ε µν = C ( h ) ǫ ( µ ˜ D − 2 ǫ · ˜ ǫ D − 2 ǫ · ˜ ǫ . Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 6 / 16

  17. Double copy for Coulomb: JNW solution Clue from momentum states: take polarisations ǫ µ , ˜ ǫ µ . ǫ · k = ˜ ǫ · k = 0 ǫ · q = q 2 = 0 Simplest double copy: ε µν = ǫ µ ˜ ǫ ν . ǫ · q = ˜ ∆ µν = η µν − k µ q ν + k ν q µ Why not ǫ ( µ ˜ ǫ ν ) , ǫ [ µ ˜ ǫ ν ] , ǫ · ˜ ǫ ∆ µν ? k · q General: graviton + B-field + dilaton. � ǫ ν ) − ∆ µν � ǫ ν ] + C ( φ ) ∆ µν + C ( B ) ǫ [ µ ˜ ε µν = C ( h ) ǫ ( µ ˜ D − 2 ǫ · ˜ ǫ D − 2 ǫ · ˜ ǫ . Linearised (Coulomb) 2 : no B-field, M ∼ C ( h ) graviton, Y ∼ C ( φ ) dilaton. � u 2 � u 2 � u µ u ν �� � � u 2 � = − 1 H µν = M − P µν + Y P µν P µν 2 r ( η µν − q µ l ν − q ν l µ ) r r r r Y = 0: linearised Schwarzschild solution. Any Y : linearised JNW solution [Janis, Newman, Winicour ’68] . Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 6 / 16

  18. Perturbative construction Starting point: H ( 0 ) µν is linearised solution, H ( 1 ) µν is first non-linear correction. H ( 0 ) H ( 1 ) = H ( 0 ) field A a Gauge theory µ i � f abc V µβγ A ( 0 ) b ( p 2 ) A ( 0 ) c A ( 1 ) a µ ( − p 1 ) = d D p 2 d D p 3 δ D ( p 1 + p 2 + p 3 ) ( p 3 ) γ β 2 p 2 1 V ( p 1 , p 2 , p 3 ) µβγ = ( p 1 − p 2 ) γ η µβ + ( p 2 − p 3 ) µ η βγ + ( p 3 − p 1 ) β η γµ YM vertex Gravity field H µν ∼ graviton + dilaton + B-field 1 � V µβγ V µ ′ β ′ γ ′ H ( 1 ) µµ ′ ( − p 1 ) = H ( 0 ) ββ ′ ( p 2 ) H ( 0 ) d D p 2 d D p 3 δ D ( p 1 + p 2 + p 3 ) γγ ′ ( p 3 ) 4 p 2 1 Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 7 / 16

  19. Perturbative construction Starting point: H ( 0 ) µν is linearised solution, H ( 1 ) µν is first non-linear correction. H ( 0 ) H ( 1 ) = H ( 0 ) field A a Gauge theory µ i � f abc V µβγ A ( 0 ) b ( p 2 ) A ( 0 ) c A ( 1 ) a µ ( − p 1 ) = d D p 2 d D p 3 δ D ( p 1 + p 2 + p 3 ) ( p 3 ) γ β 2 p 2 1 V ( p 1 , p 2 , p 3 ) µβγ = ( p 1 − p 2 ) γ η µβ + ( p 2 − p 3 ) µ η βγ + ( p 3 − p 1 ) β η γµ YM vertex Gravity field H µν ∼ graviton + dilaton + B-field 1 � V µβγ V µ ′ β ′ γ ′ H ( 1 ) µµ ′ ( − p 1 ) = H ( 0 ) ββ ′ ( p 2 ) H ( 0 ) d D p 2 d D p 3 δ D ( p 1 + p 2 + p 3 ) γγ ′ ( p 3 ) 4 p 2 1 Simplification: index factorisation. [analogous to Bern, Grant 99; Hohm 11; Cheung, Remmen 16] Ricardo Monteiro (Queen Mary) Double Copy of a Point Charge 7 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend