the critical endpoint in the 2d gauge higgs model at
play

The critical endpoint in the 2D-gauge-Higgs model at topological - PowerPoint PPT Presentation

The critical endpoint in the 2D-gauge-Higgs model at topological angle = Daniel G oschl Work done in collaboration with Christof Gattringer and Tin Sulejmanpasic [arXiv: 1807.07793] Lattice 2018, East Lansing, 25.07.2018 Conventional


  1. The critical endpoint in the 2D-gauge-Higgs model at topological angle θ = π Daniel G¨ oschl Work done in collaboration with Christof Gattringer and Tin Sulejmanpasic [arXiv: 1807.07793] Lattice 2018, East Lansing, 25.07.2018

  2. Conventional lattice representation with Villain action Matter fields φ x ∈ C , Gauge angles A x ,µ ∈ [ − π, π ] � � D [ φ ] e − S φ [ φ, A ] , Z = D [ A ] B G [ A ] e − β 2 ( F x +2 π n x ) 2 − i θ 2 π ( F x +2 π n x ) , � � B G [ A ] = x ∈ Λ n x ∈ Z F x = A x , 1 + A x +ˆ 1 , 2 − A x +ˆ 2 , 1 − A x , 2 , � 2 �� ( m 2 + 4) | φ x | 2 + λ | φ x | 4 − � � � φ ∗ x e iA x ,µ φ x +ˆ S φ [ φ, A ] = µ + c . c . . x ∈ Λ µ =1

  3. Conventional lattice representation with Villain action Matter fields φ x ∈ C , Gauge angles A x ,µ ∈ [ − π, π ] � � D [ φ ] e − S φ [ φ, A ] , Z = D [ A ] B G [ A ] e − β 2 ( F x +2 π n x ) 2 − i θ 2 π ( F x +2 π n x ) , � � B G [ A ] = x ∈ Λ n x ∈ Z F x = A x , 1 + A x +ˆ 1 , 2 − A x +ˆ 2 , 1 − A x , 2 , � 2 �� ( m 2 + 4) | φ x | 2 + λ | φ x | 4 − � � � φ ∗ x e iA x ,µ φ x +ˆ S φ [ φ, A ] = µ + c . c . . x ∈ Λ µ =1 Global charge conjugation symmetry C at θ = π : ∗ A x ,µ → − A x ,µ , φ x → φ x ◮ Implemented exactly with Villain action

  4. Worldline representation solves complex action problem � � δ ( � ∇ � Z = W H [ j ] W G [ p ] j x ) δ ( j x , 1 + p x − p x − ˆ 2 ) δ ( j x , 2 − p x + p x − ˆ 1 ) { j , p } x Dual variables: ◮ p x ∈ Z +1 ◮ j x ,µ ∈ Z +1 +1 +1 +3 Constraints: ◮ Vanishing divergence for j -flux at +1 +1 +1 each lattice point ◮ Combination of j - and p -flux has to cancel at each link +1 +1 − 1 − 1 Real and positive weights +1 − 1 − 1 − 1 W H [ j ] , W G [ p ]

  5. Dual MC-Updates Example configuration ◮ Inserts loop around plaquette in +1 either orientation: +1 +1 +1 +3 − 1 +1 +1 +1 +1 +1 +1 − 1 − 1 ◮ Fulfills constraints and ergodicity. +1 − 1 − 1 − 1

  6. Charge conjugation symmetry at θ = π Also the dual form of the Villain action implements global charge conjugation symmetry at θ = π as an exact Z 2 symmetry! ◮ Symmetry transformation: C C → p ′ → j ′ p x − − x ≡ − p x − 1 , j x ,µ − − x ,µ ≡ − j x ,µ , ∀ x , µ +1 +1 − 1 − 2 − 2 C +1 − 1 − 1 − 2 +1 − 2 − 1 − 1

  7. Charge conjugation symmetry at θ = π Also the dual form of the Villain action implements global charge conjugation symmetry at θ = π as an exact Z 2 symmetry! ◮ Symmetry transformation: C C → p ′ → j ′ p x − − x ≡ − p x − 1 , j x ,µ − − x ,µ ≡ − j x ,µ , ∀ x , µ +1 +1 − 1 − 2 − 2 C +1 − 1 − 1 − 2 +1 − 2 − 1 − 1 ◮ Z 2 nature: Applying transformation twice gives the identity transformation: C C p x − − → − p x − 1 − − → − ( − p x − 1) − 1 = p x C C − − → − j x ,µ − − → j x ,µ j x ,µ

  8. Observables Topological charge, topological susceptibility, gauge action density: ∂ 2 � q � = − 1 χ t = 1 � s G � = − 1 ∂ ∂ ∂θ ln( Z ) , ∂θ 2 ln( Z ) , ∂β ln( Z ) V V V

  9. Observables Topological charge, topological susceptibility, gauge action density: ∂ 2 � q � = − 1 χ t = 1 � s G � = − 1 ∂ ∂ ∂θ ln( Z ) , ∂θ 2 ln( Z ) , ∂β ln( Z ) V V V In worldline representation: � �� � � q � = 1 1 p x + θ � , V 2 πβ 2 π x �� 2 � �� 2 � ��� � χ t = 1 1 � 1 � p x + θ p x + θ � � − , V 2 πβ 2 π 2 πβ 2 π x x �� � �� 2 π ) 2 θ 1 1 − ( p x + � s G � = 2 β V β x

  10. Observables Topological charge, topological susceptibility, gauge action density: ∂ 2 � q � = − 1 χ t = 1 � s G � = − 1 ∂ ∂ ∂θ ln( Z ) , ∂θ 2 ln( Z ) , ∂β ln( Z ) V V V In worldline representation: � �� � � q � = 1 1 p x + θ � , V 2 πβ 2 π x �� 2 � �� 2 � ��� � χ t = 1 1 � 1 � p x + θ p x + θ � � − , V 2 πβ 2 π 2 πβ 2 π x x �� � �� 2 π ) 2 θ 1 1 − ( p x + � s G � = 2 β V β x Note: � q � is odd under C transformation at θ = π . ⇒ � q � is order parameter for breaking of C symmetry!

  11. Breaking of C symmetry ◮ Conjectured: C symmetry is broken at large m 2 and restored at sufficiently negative m 2 . [Komargodski et.al., ArXiv: 1705.04786] ◮ 2-d Ising transition between the two regimes? ◮ � q � corresponds to the Ising magnetization. ◮ We cannot observe symmetry breaking on a finite lattice = ⇒ study �| q |� . ◮ M = 4 + m 2 drives the system through the phase transition. Corresponds to temperature in Ising model. ◮ ∆ θ = θ − π plays the role of the external magnetic field in Ising model. ∆ θ = 0 corresponds to the symmetrical point.

  12. Fist-Order transition as function of θ : ( λ = 0 . 5, β = 3), M = 4 + m 2 M = 2.0 M = 3.5 0.03 <q> 0.002 <q> 0.02 0.001 0.01 0.000 0.00 -0.01 -0.001 -0.02 -0.002 -0.03 3 ∆θ 3 ∆θ -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 <s G > <s G > 0.165 0.126 0.160 8x8 0.125 0.155 16x16 32x32 0.150 0.124 3 ∆θ 3 ∆θ -3 -2 -1 0 1 2 -3 -2 -1 0 1 2

  13. Critical endpoint at ∆ θ = 0: ( λ = 0 . 5, β = 3), M = 4 + m 2 0.20 0.030 χ t 〈 |q| 〉 0.025 0.15 0.020 0.015 0.10 0.010 12x12 16x16 0.05 20x20 0.005 40x40 80x80 0.000 0.00 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 2.6 2.7 2.8 2.9 3.0 3.1 M M

  14. Critical endpoint at ∆ θ = 0: ( λ = 0 . 5, β = 3), M = 4 + m 2 0.20 0.030 χ t 〈 |q| 〉 0.025 0.15 0.020 0.015 0.10 0.010 12x12 16x16 0.05 20x20 0.005 40x40 80x80 0.000 0.00 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 2.6 2.7 2.8 2.9 3.0 3.1 M M ◮ What is the scaling behavior? Critical exponents?

  15. Finite Size Scaling for determination of critical exponents We follow the following procedure: 1. Study emerging divergences in observables as we increase the volume. 2. Determine exponent ν from scaling of �| q |� , � q 2 � and Binder cumulant U : dU d d � � � 1 dM ln � q 2 � dM ln �| q |� ∝ L max , max , � � � ν dM � � � max 3. Estimate M C from scaling of pseudo-critical mass defined as position of maximum: M pc ( L ) = M C + A L − 1 ν 4. Extract critical exponents β and γ from scaling of observables at critical Mass M C : �| q |� ( M C , L ) = L − β γ ν F q ( x ) , ν F χ ( x ) χ t ( M C , L ) = L

  16. Critical exponents 64 M pc (L) 2 >/dM d ln<q max d ln<|q|>/dM 2.98 dU/dM 32 ◮ Final results for U(1) gauge-Higgs model: 16 2.96 ν = 1 . 003(11) 8 2 >/dM d ln<q 2.94 β = 0 . 126(7) χ t 4 d ln<|q|>/dM γ = 1 . 73(7) d <|q|>/dM d U/dM 2.92 16 32 64 0.00 0.01 0.02 0.03 - ν L L χ t (0,L) <|q|> (0,L) 0.020 ◮ 2-d Ising values: 0.1 0.019 ν = 1 0.018 β = 0 . 125 0.017 γ = 1 . 75 0.016 0.01 16 32 64 128 16 32 64 128 L L

  17. Summary ◮ We study the critical endpoint of the U(1) gauge-Higgs model at topological angle θ = π . ◮ The Villain action implements the charge conjugation symmetry at θ = π as an exact Z 2 symmetry. ◮ Complex action problem is solved by simulating in the world line representation. ◮ We identify the critical endpoint and determine the critical exponents from a finite size scaling analysis. ◮ We show that the critical endpoint is in the 2d Ising universality class: ν = 1 . 003(11) , β = 0 . 126(7) , γ = 1 . 73(7)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend