phase diagram of the triangular t j k model in the doped
play

Phase Diagram of the Triangular t - J - K Model in the Doped-Mott - PowerPoint PPT Presentation

Phase Diagram of the Triangular t - J - K Model in the Doped-Mott Region: Effects of Ring Exchange Interactions and the Spin-Charge Separation Masao Ogata (Univ. of Tokyo) Yuki Fuseya (Osaka Univ.) J. Phys. Soc. Japan 78, 013601 (2009)


  1. Phase Diagram of the Triangular t - J - K Model in the Doped-Mott Region: Effects of Ring Exchange Interactions and the “Spin-Charge Separation” Masao Ogata (Univ. of Tokyo) Yuki Fuseya (Osaka Univ.) J. Phys. Soc. Japan 78, 013601 (2009)

  2. 3 He adsorbed on graphite monolayer 3 He → 3 He, 4 He, HD/HD → graphite → Triangular lattice localization at ‘‘half-filling’’ “4/7 phase” 2D 3 He : underlayer Strongly correlated Fermion system = 4 : 7 [Elser (1989)] Purely two-dimensional Super Clean

  3. Double-peaked heat capacity Spin Mass? “separate”? Spin degrees of freedom + Mass degrees of freedom Spin-‘‘Charge’’ separation Localized 4/7 phase: half-filling 3 He/ 4 He/gr, [Matsumoto, et al. (2007)]

  4. Spin-Charge separation in 1-dim Tomonaga-Luttinger liquid t (a) (c) J (d) (b) In 2-dim ---- movement of a hole leaves trace of Unfovored spin states spin - charge binding Fermi Liquid

  5. t-J model as a model for 3 He A model of monolayer 3 He in the doped case Large U Hubbard model = t-J model in a triangular lattice ------- Frustration However, no spin-charge separation was observed in the triangular t-J model. (Koretsune-Ogata, PRL 89, 116401 (2002))

  6. Multiple Spin Exchange MSE is relevant in a hard-core quantum solid --- Thouless (1965) J 3 J 2 J 4 J 6 J 5 119 36.6 22.5 12.6 6.6 [Bernu et al. (1992)]

  7. t-J-K model As a minimum model of monolayer 3 He, we use t-J - K model J = J 2 -2 J 3 ( J can be ferro. for large J 3 ) hopping exchange t J MSE K

  8. Cluster Exact diagonalization Na =12 1 2 3 4 5 6 7 1 2 3 1 2 3 8 9 10 4 5 6 7 11 12 4 5 6 7 8 9 10 8 9 10 1 2 3 11 12 4 5 6 7 11 12 1 2 3 8 9 10 1 2 3 Na =18b 4 5 6 7 11 12 4 5 6 7 8 9 10 1 2 3 8 9 10 1 2 3 4 11 12 4 5 6 7 11 12 1 2 3 4 5 6 7 8 9 8 9 10 5 6 7 8 9 10 11 12 13 11 12 Na =18a 13 14 1 2 3 10 11 12 15 16 17 18 4 15 16 17 18 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 10 11 12 7 8 9 10 11 12 7 8 9 7 8 9 8 9 10 14 15 16 17 18 5 6 7 11 12 13 14 15 16 17 18 13 14 15 16 17 18 13 14 15 16 10 11 12 13 14 15 16 17 18 1 2 3 4 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 15 16 17 18 1 2 3 4 5 6 7 8 9 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 5 6 7 8 9 10 11 12 13 14 18 13 14 18 13 14 15 16 17 15 16 17 15 16 17 10 11 12 13 14 15 16 17 18 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 15 16 17 18 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 17 18 13 14 15 16 17 18 13 14 15 16 17 18

  9. Half filling (n=1.0) Misguich et al. • N =12,18,20 • Cluster shape Momoi et al. • Boundary • E -level LiMing et al. •  s •  (comp.) • S(q), N(q) cf) 36 site Misguich, et al (1999) LiMing, et al (2000) Momoi et al (2006)

  10. Doped region (n=0.9)

  11. Excitation energy ordinary cf ) Fermi liquid phase-II Fermi Liquid region (FL) phase-III S(q) and N(q) are consistent with Fermi surface (new QL)

  12. Excitation energy ordinary cf ) Fermi liquid phase-II (FL) cf ) 1D t-J phase-III (new QL)

  13. Spin-Charge separation in 1-dim Tomonaga-Luttinger liquid t (a) (c) J (d) (b) Similar situation can be considered in the t-J-K model !

  14. 4-site cluster S=0 S=1 E K=-J K=- 2 J K J S=1 S=1 3 J S=2 S=2 S=1 5 J K (ring) dominant case IV III II J (<0) dominant case (Ferro)

  15. Plaquette approximation K -dominant case SL-I RVB: uuud dddu dddu uuud uuud dddu uuud = uuud u3d1 state

  16. uuu0 uud0 Hole-doped plaquette hole dope uuud

  17. Plaquette approximation K -dominant case Hole doping hopping uuud uuu 0 dddu uuud uuuu ddd 0 uuud

  18. Plaquette approximation hopping uuu 0 dddu uuud uuuu ddd 0 uuud uuuu dddd uuu 0 hole motion Unfavored spin states remains. spin-charge binding: Fermi liquid

  19. Plaquette approximation J-K -competing case uuud uuuu almost degenerate Hole doping

  20. Plaquette approximation J-K -competing case uuud uuuu Hole doping hopping uuud dddu uuud uuu 0 uuuu dddd uuuu uuud uuud ddd 0 uuuu uuuu

  21. Plaquette approximation hopping hopping dddu uuud uuu 0 dddd uuuu uuud uuud ddd 0 uuud uuuu dddu uuuu uuu 0 uuuu dddd hole motion No trace of spin spin-charge separation as in 1-dim : new state

  22. Spin-Charge separation in 1-dim Tomonaga-Luttinger liquid t (a) (c) J (d) (b) Similar situation in the t-J-K model

  23. Summary Fuseya-Ogata: arXiv: 0804.4329 (JPSJ 78, 013601 (2009)) Doping dependence will be OK. • Triangular t-J-K model (exact diagonalization, up to 20 site) • New state (between Ferro and Fermi liquid) • Spin-charge separation ( J vs. K , consistent with 2D 3 He double peak in C)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend