the contact mechanics challenge
play

The Contact Mechanics Challenge Martin Mser Dept. of Materials - PowerPoint PPT Presentation

The Contact Mechanics Challenge Martin Mser Dept. of Materials Science and Engineering Saarland University ICTP-COST-MODPHYSFRICT Conference: Trends in Nanotribology > The Tribology Letters Contact Mechanics Challenge Contact Mechanics


  1. The Contact Mechanics Challenge Martin Müser Dept. of Materials Science and Engineering Saarland University ICTP-COST-MODPHYSFRICT Conference: Trends in Nanotribology

  2. > The Tribology Letters Contact Mechanics Challenge Contact Mechanics deformation of solids that touch each other single-asperity quantities of primary interest: contacts - area of load or pressure - displacement of load or p nominally rough surfaces quantities of secondary interest: - distribution functions of gap, contact patch size, stress Page 2017-09-11 Trieste Trends in Nanotribology (2017) 1

  3. > The Tribology Letters Contact Mechanics Challenge Why posing a contact-mechanics challenge? GW model 50+ years May new theories keep arising simulations are becoming competitive Page 2017-09-11 Trieste Trends in Nanotribology (2017) 2

  4. > The Tribology Letters Contact Mechanics Challenge Contact mechanics: Course of action make (reasonable) make (reasonable) approximations approximations math. reality model solution (PDEs) - small-slope approximation brute-force computing - linear elasticity, no overlap - controllable approximations - randomly-rough surfaces mapping onto simpler equations - uncontrolled approximations - short-range adhesion, … Page 2017-09-11 Trieste Trends in Nanotribology (2017) 3

  5. > The Tribology Letters Contact Mechanics Challenge Building the model adhesion law σ local = σ 0 exp( − gap / ρ ) details don’t matter math. as long as r is ”small” reality model (PDEs) - small-slope approximation A true ≈ 2 p - linear elasticity, no overlap E * g A apparent - randomly-rough surfaces - short-range adhesion, … - periodic boundary conditions, hard-wall constraint Page 2017-09-11 Trieste Trends in Nanotribology (2017) 4

  6. > Building the model roll-off region Surface height spectra self-affine region C ( q ) ~ q − 2(1 + H ) H = 0.72 H = 0.8 used spectrum H = 1 H = 0.7 experimental data compiled in: Persson, Tribol. Lett. (2014) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 5

  7. > Building the model dark areas Surface height in real space touch first H = 0.8 z (µm) y (µm) L sys = 0.1 mm ; rms- h = 0.7 µ m ρ = 2 nm ; g = 50 mJ/m 2 ; E * = 25MPa x (µm) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 6

  8. > The Tribology Letters Contact Mechanics Challenge The tasks: Compute any measurable and well-defined “observable” (a function or functional of displacement field) Spatially resolved observables (at a reference load ): - gap and stress along the reference line Histograms (at a reference load à 3% contact): - gap, stress, and contact patch size Mean values as function of load: - relative contact area and mean gap Omitted: Stress spectrum (too few submissions) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 7

  9. > The Tribology Letters Contact Mechanics Challenge The contestants: Austria AC2T research G Vorlaufer, A Vernes France INSA Lyon R Bugnicourt, P Sainsot … TA Lubrecht Germany FZ-Jülich BNJ Persson MH Müser, WB Dapp Saarland Univ. Italy Polytech Bari G Carbons, F Bottiglione, L Afferante Iran Isfahan Univ. HA Esfahani, M Kadkhodai, S Akbarzadeh NL Univ. of Groningen S Solhjoo, AI Vakis Taiwan Chang Gung J-J Wu UK Imperial College D Dini, S Medina USA Johns Hopkins J Monti, L Pastewka, MO Robbins K Harris, A Bennett … WG Sawyer Univ Florida KJ Streator, A Rostami Auburn Univ. RL Jackson, Y Xu Georgia Tech. Page 2017-09-11 Trieste Trends in Nanotribology (2017) 8

  10. > The Tribology Letters Contact Mechanics Challenge The methods: exact (boundary-value) methods (5 times) - only controlled approximations redefine problem to new scale finite-element method (no showing) all-atom accuracy simulations Persson theory (1 time) efficiency x 0.001 - renormalization group approach dimensionality reduction (no showing) experiment x 1000 Bearing models (5 times) - local constitutive relations “inverse” - no interaction between contact patches models Page 2017-09-11 Trieste Trends in Nanotribology (2017) 9

  11. > Methods exact boundary-value methods effectively all minimize total energy or zero forces - elastic energy in Fourier space, constraint & adhesion in real space σ  u    ( ) ≈ qE * - all employ fast Fourier transform (FFT)  ( ) +  ( ) +   ( ) + ... q q q q σ ext σ adh 2 elastic stress of a semi-infinite solid in q-space - alter displacements until energy minimized / stress disappears FFT-BVM + conjugate gradient Bugnicourt, Sainsot, Lubrecht BICGSTAB finite-range repulsion Wu BEM+B splining at small scales Vorlaufer, Varnas FFT-IA elastic stress field is varied Dini, Medina GFMD Green’s function molecular dynamics Müser, Dapp, Pastewka, Robbins Page 2017-09-11 Trieste Trends in Nanotribology (2017) 10

  12. > Methods Persson theory maps contact mechanics problem onto diffusion process magnification à time, stress à position stress = 0: absorbing boundary roughness at magnification q à diffusion constant starting assumption: Pr( s ) = d ( s ) broaden Pr( s ) with each newly resolved h ( q ) J Chem. Phys. (2001) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 11

  13. > Methods Bearing-area models base models (such as Greenwood-Williamson): - assume local model for asperity interactions, e.g., Hertz, JKR, or simple springs (Winkler) - assume a distribution of asperity heights and curvatures - ignore elastic deformation between asperities Winkler simple springs Angelini, Sawyer SR-GW spatially resolved GW Esfahani, Kadkhodaei, Akbarzad Archard fly-on-a-fly-on-a-fly… Jackson, Xu, Streator, Rostami SC-GW slightly-corrected Bottiglione, Carbone ICHA interacting & coalescing Hertz asp’s Afferante, Carbone Page 2017-09-11 Trieste Trends in Nanotribology (2017) 12

  14. > Methods Experiments 3D print surface topography Harris, Bennett, Schulze, Rohde, Ifju, Sawyer waveguide mask diffuse light source real contact 3D-printed surface blackout fabric waveguide glass molded PDMS Page 2017-09-11 Trieste Trends in Nanotribology (2017) 13

  15. > Methods All-atom MD scale problem to atomic scale Solhjoo, Vakis all-atom simulations: EAM potential for calcium E * = 30 GPa à p = 0.3 GPa; p c = 10 GPa dislocations rigid substrate with given height profile Page 2017-09-11 Trieste Trends in Nanotribology (2017) 14

  16. > Contact-mechanics challenge: Results Contact visualization experiment Page 2017-09-11 Trieste Trends in Nanotribology (2017) 15

  17. > Contact-mechanics challenge: Results Contact visualization Page 2017-09-11 Trieste Trends in Nanotribology (2017) 16

  18. > Contact-mechanics challenge: Results Contact visualization all-atom MD Page 2017-09-11 Trieste Trends in Nanotribology (2017) 17

  19. > Contact-mechanics challenge: Results Contact visualization Page 2017-09-11 Trieste Trends in Nanotribology (2017) 18

  20. > The Tribology Letters Contact Mechanics Challenge Results: Spatially resolved quantities Gap across reference line (appr. methods) 3.0 reference gap exact methods 2.5 Experiment Winkler SRGW 2.0 all-atom MD g ( µ m) 1.5 1.0 0.5 0.0 0 20 40 60 80 100 y ( µ m) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 19

  21. > The Tribology Letters Contact Mechanics Challenge Results: Spatially resolved quantities Gap across reference line (exact methods) GFMD 2.0 FFT-BVM BICGSTAB BEM+B FFT-IA 1.5 g ( µ m) 1.0 0.5 0.0 0 20 40 60 80 100 y ( µ m) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 20

  22. > The Tribology Letters Contact Mechanics Challenge Results: Stress across reference line (local zoom-in) 2.0 GFMD, FFT-BVM 1.5 SRGW BICGSTAB BEM+B 1.0 FFT-IA σ ( E */ g ) _ 0.5 0.0 -0.5 -1.0 38 40 42 44 46 48 y ( µ m) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 21

  23. > The Tribology Letters Contact Mechanics Challenge Results: Stress across reference line (local zoom-in) 2.0 GFMD, FFT-BVM 1.5 SRGW BICGSTAB BEM+B 1.0 FFT-IA σ ( E */ g ) _ 0.5 0.0 -0.5 -1.0 38 40 42 44 46 48 y ( µ m) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 22

  24. > The Tribology Letters Contact Mechanics Challenge Results: Stress distribution 0.07 GFMD GFMD (contact) 0.06 FFT-BVM BEM+B BICGSTAB 0.05 Pr( σ ) (1/ E * g ) FFT-IA GFMD (w/o adhesion) 0.04 SCGW (w/o adhesion) ICHA (w/o adhesion) 0.03 0.02 0.01 0.00 -0.5 0.0 0.5 1.0 1.5 σ ( E * g) Page 2017-09-11 Trieste Trends in Nanotribology (2017) 23

  25. > The Tribology Letters Contact Mechanics Challenge Results: Patch-size distribution Hertz/JKR- like contacts -3 10 -4 10 1.0 JKR GFMD -5 FFT-BVM 10 Winkler 0.8 -2 ) BEM+B Pr ( a ) ( nm -6 BICGSTAB 10 GFMD FFT-IA 0.6 CPr ( a ) FFT-BVM ICHA -7 10 Winkler BEM+B 0.4 -8 BICGSTAB 10 FFT-IA ICHA -9 0.2 10 -10 10 0.0 7 2 3 4 5 6 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 10 2 ) a ( nm 2 ) a ( µ m Page 2017-09-11 Trieste Trends in Nanotribology (2017) 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend