the conestrip algorithm
play

The CONEstrip Algorithm Erik Quaeghebeur SYSTeMS Research Group, - PowerPoint PPT Presentation

The CONEstrip Algorithm Erik Quaeghebeur SYSTeMS Research Group, Ghent University, Belgium Erik.Quaeghebeur@UGent.be Avoiding sure loss Finite possibility space , Linear vector space L = [ R ] , Finite set of gambles K


  1. The CONEstrip Algorithm Erik Quaeghebeur SYSTeMS Research Group, Ghent University, Belgium Erik.Quaeghebeur@UGent.be

  2. Avoiding sure loss ▸ Finite possibility space Ω , ▸ Linear vector space L ∶= [ Ω → R ] , ▸ Finite set of gambles K ⋐ L , ▸ Lower prevision P ∈ [ K → R ] , ▸ Set of marginal gambles A ∶= { h − Ph ∶ h ∈ K } .

  3. Avoiding sure loss ▸ Finite possibility space Ω , ▸ Linear vector space L ∶ = [ Ω → R ] , ▸ Finite set of gambles K ⋐ L , ▸ Lower prevision P ∈ [ K → R ] , ▸ Set of marginal gambles A ∶ = { h − Ph ∶ h ∈ K } . λ ∈ R A , find subject to ∑ g ∈A λ g ⋅ g ⋖ 0 and λ ≥ 0 .

  4. Avoiding sure loss ▸ Finite possibility space Ω , ▸ Linear vector space L ∶ = [ Ω → R ] , ▸ Finite set of gambles K ⋐ L , ▸ Lower prevision P ∈ [ K → R ] , ▸ Set of marginal gambles A ∶ = { h − Ph ∶ h ∈ K } . λ ∈ R A , find subject to ∑ g ∈A λ g ⋅ g ⋖ 0 and λ ≥ 0 . ▸ Indicator function 1 B of an event B ⊆ Ω ; 1 ω ∶ = 1 { ω } for ω ∈ Ω . ( λ , µ ) ∈ R A × R Ω , find subject to ∑ g ∈A λ g ⋅ g + ∑ ω ∈ Ω µ ω ⋅ 1 ω = 0 and λ ≥ 0 and µ ≥ 1 .

  5. Avoiding partial loss ▸ Set of (finite) events Ω ∗ , ▸ Finite set of (gamble, event)-pairs N ⋐ L × Ω ∗ , ▸ Conditional lower prevision P ∈ [ N → R ] , ▸ Set of (conditional marginal gamble, event)-pairs B ∶ = {([ h − P ( h ∣ B )] ⋅ 1 B , B ) ∶ ( h , B ) ∈ N } .

  6. Avoiding partial loss ▸ Set of (finite) events Ω ∗ , ▸ Finite set of (gamble, event)-pairs N ⋐ L × Ω ∗ , ▸ Conditional lower prevision P ∈ [ N → R ] , ▸ Set of (conditional marginal gamble, event)-pairs B ∶ = {([ h − P ( h ∣ B )] ⋅ 1 B , B ) ∶ ( h , B ) ∈ N } . ( λ , ε ) ∈ R B × R B , find ∑ ( g , B )∈B λ g , B ⋅ [ g + ε g , B ⋅ 1 B ] ≤ 0 λ > 0 ε ⋗ 0 . subject to and and

  7. Avoiding partial loss ▸ Set of (finite) events Ω ∗ , ▸ Finite set of (gamble, event)-pairs N ⋐ L × Ω ∗ , ▸ Conditional lower prevision P ∈ [ N → R ] , ▸ Set of (conditional marginal gamble, event)-pairs B ∶ = {([ h − P ( h ∣ B )] ⋅ 1 B , B ) ∶ ( h , B ) ∈ N } . ( λ , ε ) ∈ R B × R B , find ∑ ( g , B )∈B λ g , B ⋅ [ g + ε g , B ⋅ 1 B ] ≤ 0 λ > 0 ε ⋗ 0 . subject to and and ( λ , ν , µ ) ∈ R B × ( R B × R B ) × R Ω , find ∑ ( g , B )∈B λ g , B ⋅ [ ν g , B , g ⋅ g + ν g , B , B ⋅ 1 B ] + ∑ ω ∈ Ω µ ω ⋅ 1 ω = 0 subject to λ > 0 ν ⋗ 0 µ ≥ 0 . and to and and

  8. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for

  9. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  10. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  11. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  12. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  13. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  14. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  15. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  16. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  17. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 g 3 g 1 g 4 g 10 R g 9 g 5 g 8 g 6 g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} .

  18. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 { g k ∶ k = 1 .. 10 } g 3 g 1 g 4 { g 1 , g 2 } { g 2 , g 4 } { g 6 } { g 8 , g 9 } g 10 R g 9 g 5 g 8 g 6 { g 2 } { g 2 } { g 4 } g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} . Cone-in-facet representation: {{ g k ∶ k = 1 .. 10 } , { g 1 , g 2 } , { g 2 , g 4 } , { g 6 } , { g 8 , g 9 } , { g 2 } , { g 4 }} .

  19. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 { g k ∶ k = 1 .. 10 } g 3 g 1 g 4 { g 1 , g 2 } { g 2 , g 4 } { g 6 } { g 8 , g 9 } g 10 R g 9 g 5 g 8 g 6 { g 2 } { g 2 } { g 4 } g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} . Cone-in-facet representation: {{ g k ∶ k = 1 .. 10 } , { g 1 , g 2 } , { g 2 , g 4 } , { g 6 } , { g 8 , g 9 } , { g 2 } , { g 4 }} .

  20. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 { g k ∶ k = 1 .. 10 } g 3 g 1 g 4 { g 1 , g 2 } { g 2 , g 4 } { g 6 } { g 8 , g 9 } g 10 R g 9 g 5 g 8 g 6 { g 2 } { g 2 } { g 4 } g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} . Cone-in-facet representation: {{ g k ∶ k = 1 .. 10 } , { g 1 , g 2 } , { g 2 , g 4 } , { g 6 } , { g 8 , g 9 } , { g 2 } , { g 4 }} .

  21. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 { g k ∶ k = 1 .. 10 } g 3 g 1 g 4 { g 1 , g 2 } { g 2 , g 4 } { g 6 } { g 8 , g 9 } g 10 R g 9 g 5 g 8 g 6 { g 2 } { g 2 } { g 4 } g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} . Cone-in-facet representation: {{ g k ∶ k = 1 .. 10 } , { g 1 , g 2 } , { g 2 , g 4 } , { g 6 } , { g 8 , g 9 } , { g 2 } , { g 4 }} .

  22. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 { g k ∶ k = 1 .. 10 } g 3 g 1 g 4 { g 1 , g 2 } { g 2 , g 4 } { g 6 } { g 8 , g 9 } g 10 R g 9 g 5 g 8 g 6 { g 2 } { g 2 } { g 4 } g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} . Cone-in-facet representation: {{ g k ∶ k = 1 .. 10 } , { g 1 , g 2 } , { g 2 , g 4 } , { g 6 } , { g 8 , g 9 } , { g 2 } , { g 4 }} .

  23. Representation of finitary general cones As a convex closure of a finite number of finitary open cones: R ∶ = {∑ D∈R λ D ⋅ ∑ g ∈D ν D , g ⋅ g ∶ λ > 0 , ν ⋗ 0 } R ⋐ L ∗ . for g 2 { g k ∶ k = 1 .. 10 } g 3 g 1 g 4 { g 1 , g 2 } { g 2 , g 4 } { g 6 } { g 8 , g 9 } g 10 R g 9 g 5 g 8 g 6 { g 2 } { g 2 } { g 4 } g 7 R ∶ = {{ g 3 , g 5 , g 10 } , { g 1 , g 2 } , { g 2 , g 7 } , { g 8 , g 9 } , { g 2 } , { g 4 } , { g 6 }} . Cone-in-facet representation: {{ g k ∶ k = 1 .. 10 } , { g 1 , g 2 } , { g 2 , g 4 } , { g 6 } , { g 8 , g 9 } , { g 2 } , { g 4 }} .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend