the class np isabel oitavem cmaf ul and fct unl recursion
play

The class NP Isabel Oitavem CMAF-UL and FCT-UNL - PowerPoint PPT Presentation

The class NP Isabel Oitavem CMAF-UL and FCT-UNL Recursion-theoretic approach Theorem FPtime [ B ; SC , SR W ] (Bellantoni-Cook 1992) FPspace [ B ; SC , TR W ] (O 2008) P NP Pspace Recursion-theoretic approach Theorem FPtime


  1. The class NP Isabel Oitavem CMAF-UL and FCT-UNL

  2. Recursion-theoretic approach Theorem FPtime ≃ [ B ; SC , SR W ] (Bellantoni-Cook 1992) FPspace ≃ [ B ; SC , TR W ] (O 2008) P ⊆ NP ⊆ Pspace

  3. Recursion-theoretic approach Theorem FPtime ≃ [ B ; SC , SR W ] (Bellantoni-Cook 1992) FPspace ≃ [ B ; SC , TR W ] (O 2008) P ⊆ NP ⊆ Pspace FPtime ⊆ · · · ⊆ FPspace

  4. Recursion-theoretic approach Theorem FPtime ≃ [ B ; SC , SR W ] (Bellantoni-Cook 1992) FPspace ≃ [ B ; SC , TR W ] (O 2008) P ⊆ NP ⊆ Pspace FPtime ⊆ FPtime ∪ NP ⊆ FPspace

  5. Recursion-theoretic approach Theorem FPtime ≃ [ B ; SC , SR W ] (Bellantoni-Cook 1992) FPspace ≃ [ B ; SC , TR W ] (O 2008) P ⊆ NP ⊆ Pspace FPtime ⊆ FPtime ∪ NP ⊆ FPspace � �� � � �� � � �� � determ. non-determ. alternating � �� � � �� � � �� �

  6. Recursion-theoretic approach Theorem FPtime ≃ [ B ; SC , SR W ] (Bellantoni-Cook 1992) FPspace ≃ [ B ; SC , TR W ] (O 2008) P ⊆ NP ⊆ Pspace FPtime ⊆ FPtime ∪ NP ⊆ FPspace � �� � � �� � � �� � determ. non-determ. alternating � �� � � �� � � �� � recursion ? tree-recursion

  7. Recursion-theoretic approach FPtime ≃ [ B ; SC , SR W ] (Bellantoni-Cook 1992) FPspace ≃ [ B ; SC , TR W ] (O 2008) ◮ f = SC( g , ¯ r , ¯ s ) f (¯ x ; ¯ y ) = g (¯ r (¯ x ; );¯ s (¯ x ; ¯ y )) ◮ f = SR W ( g , h ) f ( ǫ, ¯ x ; ¯ y ) = g (¯ x ; ¯ y ) f ( z 0 , ¯ x ; ¯ y ) = h ( z 0 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) f ( z 1 , ¯ x ; ¯ y ) = h ( z 1 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) ◮ f = TR W ( g , h ) f ( p , ǫ, ¯ x ; ¯ y ) = g ( p , ¯ x ; ¯ y ) f ( p , z 0 , ¯ x ; ¯ y ) = h ( p , z 0 , ¯ x ; ¯ y , f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) f ( p , z 1 , ¯ x ; ¯ y ) = h ( p , z 1 , ¯ x ; ¯ y , f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y ))

  8. Recursion-theoretic approach FPtime ≃ [ B ; SC , SR W ] (Bellantoni-Cook 1992) NP ≃ · · · FPspace ≃ [ B ; SC , TR W ] (O 2008) ◮ f = SC( g , ¯ s ) r , ¯ f (¯ x ; ¯ y ) = g (¯ r (¯ x ; );¯ s (¯ x ; ¯ y )) ◮ f = SR W ( g , h ) f ( ǫ, ¯ x ; ¯ y ) = g (¯ x ; ¯ y ) f ( z 0 , ¯ x ; ¯ y ) = h ( z 0 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) f ( z 1 , ¯ x ; ¯ y ) = h ( z 1 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) ◮ f = TR W ( g , h ) f ( p , ǫ, ¯ x ; ¯ y ) = g ( p , ¯ x ; ¯ y ) f ( p , z 0 , ¯ x ; ¯ y ) = h ( p , z 0 , ¯ x ; ¯ y , f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) f ( p , z 1 , ¯ x ; ¯ y ) = h ( p , z 1 , ¯ x ; ¯ y , f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y ))

  9. Recursion-theoretic approach FPtime ≃ [ B ; SC , SR W ] = ST 0 (Bellantoni-Cook 1992) NP ≃ [ ST 0 ; SC 0 , · · · ] FPspace ≃ [ B ; SC , TR W ] (O 2008) ◮ f = SC 0 ( g , ¯ s ) r , ¯ f (¯ x ; ¯ y ) = g (¯ r (¯ x ; );¯ s (¯ x ; ¯ y )) , ¯ r , ¯ s ∈ ST 0 ◮ f = SR W ( g , h ) f ( ǫ, ¯ x ; ¯ y ) = g (¯ x ; ¯ y ) f ( z 0 , ¯ x ; ¯ y ) = h ( z 0 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) f ( z 1 , ¯ x ; ¯ y ) = h ( z 1 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) ◮ f = TR W ( g , h ) f ( p , ǫ, ¯ x ; ¯ y ) = g ( p , ¯ x ; ¯ y ) f ( p , z 0 , ¯ x ; ¯ y ) = h ( p , z 0 , ¯ x ; ¯ y , f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) f ( p , z 1 , ¯ x ; ¯ y ) = h ( p , z 1 , ¯ x ; ¯ y , f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y ))

  10. Recursion-theoretic approach FPtime ≃ [ B ; SC , SR W ] = ST 0 (Bellantoni-Cook 1992) NP ≃ [ ST 0 ; SC 0 , · · · ] FPspace ≃ [ B ; SC , TR W ] (O 2008) ◮ f = SC 0 ( g , ¯ s ) r , ¯ f (¯ x ; ¯ y ) = g (¯ r (¯ x ; );¯ s (¯ x ; ¯ y )) , ¯ r , ¯ s ∈ ST 0 ◮ f = SR W ( g , h ) f ( ǫ, ¯ x ; ¯ y ) = g (¯ x ; ¯ y ) f ( z 0 , ¯ x ; ¯ y ) = h ( z 0 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) f ( z 1 , ¯ x ; ¯ y ) = h ( z 1 , ¯ x ; ¯ y , f ( z , ¯ x ; ¯ y )) ◮ f = TR W ( g , ∨ ) f ( p , ǫ, ¯ x ; ¯ y ) = g ( p , ¯ x ; ¯ y ) f ( p , z 0 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) f ( p , z 1 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y ))

  11. Recursion-theoretic approach FPtime ≃ [ B ; SC , SR W ] = ST 0 (Bellantoni-Cook 1992) NP ≃ [ ST 0 ; SC 0 , ∨ -TR L W ] ◮ f = SC 0 ( g , ¯ r , ¯ s ) f (¯ x ; ¯ y ) = g (¯ r (¯ x ; );¯ s (¯ x ; ¯ y )) , ¯ r , ¯ s ∈ ST 0 ◮ f = TR W ( g , ∨ ) = ∨ -TR L W ( g ) f ( p , ǫ, ¯ x ; ¯ y ) = g ( p , ¯ x ; ¯ y ) f ( p , z 0 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) f ( p , z 1 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y ))

  12. Recursion-theoretic approach FPtime ≃ [ B ; SC , SR W ] = ST 0 (Bellantoni-Cook 1992) NP ≃ [ ST 0 ; SC 0 , ∨ -TR L W ] ◮ f = SC 0 ( g , ¯ r , ¯ s ) f (¯ x ; ¯ y ) = g (¯ r (¯ x ; );¯ s (¯ x ; ¯ y )) , ¯ r , ¯ s ∈ ST 0 ◮ f = TR W ( g , ∨ ) = ∨ -TR L W ( g ) f ( p , ǫ, ¯ x ; ¯ y ) = g ( p , ¯ x ; ¯ y ) f ( p , z 0 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) f ( p , z 1 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y ))

  13. Recursion-theoretic approach FPtime ≃ [ B ; SC , SR W ] = ST 0 (Bellantoni-Cook 1992) NP ≃ [ ST 0 ; SC 0 , ∨ -TR L W ] ≃ [ ST 0 ; SC 0 , ∨ -TR R W ] ◮ f = SC 0 ( g , ¯ s ) r , ¯ f (¯ x ; ¯ y ) = g (¯ r (¯ x ; );¯ s (¯ x ; ¯ y )) , ¯ r , ¯ s ∈ ST 0 ◮ f = TR W ( g , ∨ ) = ∨ -TR L W ( g ) f ( p , ǫ, ¯ x ; ¯ y ) = g ( p , ¯ x ; ¯ y ) f ( p , z 0 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) f ( p , z 1 , ¯ x ; ¯ y ) = ∨ ( ; f ( p 0 , z , ¯ x ; ¯ y ) , f ( p 1 , z , ¯ x ; ¯ y )) ◮ f = ∨ -TR R W ( g ) f ( ǫ, ¯ x ; ¯ y , p ) = g (¯ x ; ¯ y , p ) f ( z 0 , ¯ x ; ¯ y , p ) = ∨ ( ; f ( z , ¯ x ; ¯ y , p 0) , f ( z , ¯ x ; ¯ y , p 1)) f ( z 1 , ¯ x ; ¯ y , p ) = ∨ ( ; f ( z , ¯ x ; ¯ y , p 0) , f ( z , ¯ x ; ¯ y , p 1))

  14. Recursion-theoretic approach Theorem NP ≃ [ ST 0 ; SC 0 , ∨ -TR L W ] ≃ [ ST 0 ; SC 0 , ∨ -TR R W ] Lemma For all f ∈ [ ST 0 ; SC 0 , ∨ -TR L W ] there exists F ∈ [ ST 0 ; SC 0 , ∨ -TR R W ] such that ∀ ¯ x ∀ ¯ y f (¯ x ; ¯ y ) = F (¯ x , ¯ y ; ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend