the charge radius of the proton
play

The Charge Radius of the Proton Gil Paz Enrico Fermi Institute, The - PowerPoint PPT Presentation

The Charge Radius of the Proton Gil Paz Enrico Fermi Institute, The University of Chicago & Department of Physics and Astronomy, Wayne State University Richard J. Hill, GP PRD 82 113005 (2010) Richard J. Hill, GP [arXiv:1103.4617] Form


  1. The Charge Radius of the Proton Gil Paz Enrico Fermi Institute, The University of Chicago & Department of Physics and Astronomy, Wayne State University Richard J. Hill, GP PRD 82 113005 (2010) Richard J. Hill, GP [arXiv:1103.4617]

  2. Form Factors Matrix element of EM current between nucleon states give rise to two form factors ( q = p f − p i ) � � γ µ F 1 ( q 2 ) + i σ µν � q γ µ q | p ( p i ) � = ¯ 2 m F 2 ( q 2 ) q ν � p ( p f ) | e q ¯ u ( p f ) u ( p i ) q Sachs electric and magnetic form factors G E ( q 2 ) = F 1 ( q 2 ) + q 2 F 2 ( q 2 ) G M ( q 2 ) = F 1 ( q 2 ) + F 2 ( q 2 ) 4 m 2 p G p E (0) = 1 G M (0) = µ p ≈ 2 . 793 The slope of G p E � E = 6 dG p � � r 2 � p E � dq 2 � � q 2 =0 � determines the charge radius r p � r 2 � p E ≡ E Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 2

  3. Charge radius from atomic physics � 1 ( q 2 ) + i σ µν � � q γ µ q | p ( p i ) � = ¯ γ µ F p 2 m F p 2 ( q 2 ) q ν � p ( p f ) | e q ¯ u ( p f ) u ( p i ) q For a point particle amplitude for p + ℓ → p + ℓ M ∝ 1 U ( r ) = − Z α ⇒ q 2 r Including q 2 corrections from proton structure M ∝ 1 U ( r ) = 4 π Z α q 2 q 2 = 1 δ 3 ( r )( r p E ) 2 ⇒ 6 � � Proton structure corrections m r = m ℓ m p / ( m ℓ + m p ) ≈ m ℓ 2( Z α ) 4 r ( r p m 3 E ) 2 δ ℓ 0 ∆ E r p = 3 n 3 E Muonic hydrogen can give the best measurement of r p E ! Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 3

  4. Charge radius from atomic physics Lamb shift in muonic hydrogen [Pohl et al. Nature 466 , 213 (2010)] r p E = 0 . 84184(67) fm CODATA value [Mohr et al. RMP 80 , 633 (2008)] r p E = 0 . 8768(69) fm extracted mainly from (electronic) hydrogen 5 σ discrepancy! We can also extract it from electron-proton scattering data Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 4

  5. Charge radius from scattering data Problem: r p E in literature depends on functional form of G p E r p E not stable when we include more parameters E from e − p scattering data ( Q 2 ≤ 0 . 04 GeV 2 ) tabulated r p in Rosenfelder [arXiv:nucl-th/9912031] ( r p E in 10 − 18 m ) k max = 1 2 3 4 5 836 +8 867 +23 866 +52 959 +85 1122 +122 polynomial − 9 − 24 − 56 − 93 − 137 882 +10 869 +26 continued fraction − − − − 10 − 25 918 +9 868 +28 879 +64 1022 +102 1193 +152 z expansion (no bound) − 9 − 29 − 69 − 114 − 174 879 +38 880 +39 880 +39 918 +9 868 +28 z expansion ( | a k | ≤ 10) − 9 − 29 − 59 − 61 − 62 Only constrained z expansion is stable and model independent Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 5

  6. The recent discrepancy [Hill, GP PRD 82 113005 (2010)] showed previous extractions are model dependent underestimated the error by a factor of 2 or more Based on a model independent approach using scattering data from proton, neutron and π π [Hill, GP PRD 82 113005 (2010)] r p E = 0 . 871(11) fm CODATA value (extracted mainly from electronic hydrogen) [Mohr et al. RMP 80 , 633 (2008)] r p E = 0 . 8768(69) fm Lamb shift in muonic hydrogen [Pohl et al. Nature 466 , 213 (2010)] r p E = 0 . 84184(67) fm Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 6

  7. Lamb shift in muonic hydrogen CREMA measured [Pohl et al. Nature 466 , 213 (2010)] ∆ E = 206 . 2949 ± 0 . 0032 meV Comparing to the theoretical expression [Pachucki PRA 60 , 3593 (1999), Borie PRA 71 (3), 032508 (2005)] E ) 2 + 0 . 0347( r p E ) 3 meV ∆ E = 209 . 9779(49) − 5 . 2262( r p They got r p E = 0 . 84184(67) fm Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 7

  8. The Theoretical Prediction Is there a problem with the theoretical prediction? [Pachucki PRA 60 , 3593 (1999), Borie PRA 71 (3), 032508 (2005)] E ) 3 meV 5 . 2262( r p 0 . 0347( r p E ) 2 ∆ E = 209 . 9779(49) − + ↑ ↑ ↑ mostly already where does µ QED discussed this term come from? Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 8

  9. � Two-photon amplitude: “standard” calculation l l p p “standard” calculation: separate to proton and non-proton - non-proton ↔ DIS For proton - Insert form factors into vertices � ∞ dq 2 f ( G E , G M ) M = 0 - Using a “dipole form factor” G i ( q 2 ) ≈ G i ( q 2 ) / G i (0) ≈ [1 − q 2 / Λ 2 ] − 2 E ) 3 term - M is a function of Λ ⇒ ( r p Using, Λ 2 = 0 . 71 GeV 2 ⇒ ∆ E ≈ 0 . 018 meV [Pachucki, PRA 53 , 2092 (1996)] Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 9

  10. � Two-photon amplitude: “standard” calculation l l p p Why is the insertion of form factors in vertices valid? Even if it was, result looks funny two-photon amplitude ⇔ the charge radius only for one parameter model for G E and G M In ”standard approach” two-photon ⇒ ∆ E ≈ 0 . 018 meV Need 0 . 258(90) meV (scattering) or 0 . 311(63) meV (spec.) to explain discrepancy Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 10

  11. NRQED Model Independent approach: use NRQED [Caswell, Lepage PLB 167 , 437 (1986); Kinoshita Nio PRD 53 , 4909 (1996); Manohar PRD 56 , 230 (1997)] iD t + D 2 + D 4 � + c F e σ · B + c D e [ ∂ · E ] ψ † L e = e 8 m 3 8 m 2 2 m e 2 m e e e + c W 1 e { D 2 , σ · B } + ic S e σ · ( D × E − E × D ) 8 m 2 8 m 3 e e − c W 2 e D i σ · B D i + c p ′ p e σ · DB · D + D · B σ · D 4 m 3 8 m 3 e e + c A 1 e 2 B 2 − E 2 + ic M e { D i , [ ∂ × B ] i } − c A 2 e 2 E 2 � + ... ψ e 8 m 3 8 m 3 16 m 3 e e e Need also ψ † p σ ψ p · ψ † ψ † p ψ p ψ † e σ ψ e e ψ e L contact = d 1 + d 2 m e m p m e m p Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 11

  12. NRQED From c i and d i determine proton structure correction, e.g. m 3 r ( Z α ) 3 � Z απ � d 2 c proton δ E ( n , ℓ ) = δ ℓ 0 − π n 3 2 m 2 D m e m p p Matching - Operators with one photon coupling: c i given by F ( n ) (0) i - Operators with only two photon couplings: c A i given by forward and backward Compton scattering - d i from two-photon amplitude Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 12

  13. � Two-photon amplitude: matching l l p p 1 � � d 4 x e iq · x � k , s | T { J µ e . m . ( x ) J ν e . m . (0) }| k , s � i 2 s − g µν + q µ q ν k µ − k · q q µ k ν − k · q q ν � � � � � � = W 1 + W 2 q 2 q 2 q 2 Matching 4 π m r 2 m e m p λ − 2 π m r π m r � � F 2 (0)+4 m 2 p F ′ 1 (0) − λ 3 m 2 p λ + d 2 ( Z α ) − 2 � 2 � � 2 1 e log m p p log m e � m 2 λ − m 2 3 + − m 2 p − m 2 m e m p λ m e m p e � 1 � ∞ Q 3 = − m e � 1 − x 2 dx dQ ( Q 2 + λ 2 ) 2 ( Q 2 + 4 m 2 e x 2 ) m p − 1 0 � � (1 + 2 x 2 ) W 1 (2 im p Qx , Q 2 ) − (1 − x 2 ) m 2 p W 2 (2 im p Qx , Q 2 ) × Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 13

  14. d 2 � In order to determine d 2 need to know W i l l Im ∼ Im W i p p can be extracted from on-shell quantities: Proton form factors and Inelastic structure functions To find W i from Im W i , need dispersion relations Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 14

  15. Dispersion relation Dispersion relations ( ν = 2 k · q , Q 2 = − q 2 ) � ∞ W 1 ( ν, Q 2 ) = W 1 (0 , Q 2 ) + ν 2 ν cut ( Q 2 ) 2 d ν ′ 2 Im W 1 ( ν ′ , Q 2 ) ν ′ 2 ( ν ′ 2 − ν 2 ) π � ∞ ν cut ( Q 2 ) 2 d ν ′ 2 Im W 2 ( ν ′ , Q 2 ) W 2 ( ν, Q 2 ) = 1 ν ′ 2 − ν 2 π W 1 requires subtraction... - Im W p i from form factors - Im W c i from DIS - What about W 1 (0 , Q 2 )? Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 15

  16. W 1 (0 , Q 2 ) Can calculate in two limits: [Hill, GP, arXiv:1103.4617] - Q 2 ≪ m 2 p The photon sees the proton “almost“ like an elementary particle Use NRQED to calculate W 1 (0 , Q 2 ) upto O ( Q 2 ) (including) F − 1) + 2 Q 2 W 1 (0 , Q 2 ) = 2( c 2 c A 1 + c 2 � � F − 2 c F c W 1 + 2 c M 4 m 2 p - Q 2 ≫ m 2 p The photon sees the quarks inside the proton Use OPE to find W 1 (0 , Q 2 ) ∼ 1 / Q 2 for large Q 2 In between you will have to model! Current calculation pretends there is no model dependence How big is the model dependence? Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 16

  17. Bound State Energy 1) Proton: Im W p i using dipole form factor ∆ E = − 0 . 016 meV 2) Continuum: Im W c i [Carlson, Vanderhaeghen arXiv:1101.5965] ∆ E = 0 . 0127(5) meV 3) What about W 1 (0 , Q 2 )? “Sticking In Form Factors” (SIFF) model W SIFF (0 , Q 2 ) = 2 F 2 (2 F 1 + F 2 ) F i ≡ F i ( Q 2 ) 1 Gil Paz (The University of Chicago & Wayne State University) The Charge Radius of the Proton 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend