the brainscales physical model machine from commissioning
play

The BrainScaleS physical model machine From commissioning to real - PowerPoint PPT Presentation

The BrainScaleS physical model machine From commissioning to real world problem solving 5 th Neuro Inspired Computa>onal Elements Workshop NICE 2017 Karlheinz Meier Ruprecht-Karls-Universitt Heidelberg meierk@kip.uni-heidelberg.de


  1. The BrainScaleS physical model machine From commissioning to real world problem solving 5 th Neuro Inspired Computa>onal Elements Workshop NICE 2017 Karlheinz Meier Ruprecht-Karls-Universität Heidelberg meierk@kip.uni-heidelberg.de @brainscales

  2. Why brain inspired compu>ng ? future compu>ng based on understanding biological biological informa>on informa>on processing processing need model system to test ideas Two fundamentally different modeling approaches: • NUMERICAL MODEL (Turing) represents model parameters as binary numbers can be combined to • PHYSICAL MODEL (not Turing) form a hybrid represents model parameters as physical quan>>es system → voltage, current, charge (like the biological brain)

  3. Digital • Discrete values of physical variables • Computa>on by Boolean algebra • One wire one bit of informa>on • Signal restored aPer gate Analog • Con>nuous values of physical variables • Computa>on by component physics • One wire many bits of informa>on • Signal not restored aPer stage Nature / mixed-signal • Local analogue computa>on • Binary communica>on by spikes • Signal restora>on

  4. Modern Neuroscience : Access to mul>ple Scales in Space and Time - 1,000,000 000 100,000 100,000 000,0 0.0001 0.0001 10,000 10,000 0 001 0.001 1,000 000 00 0.00 0 01 0.01 1,00 1,00 100 100 0.0 0.1 0 1 0.1 .1 10 10 10 10 10 e. 1 1 1 ide 1,000 000 1,000 1, 000 2014 PET imaging o Brain EEG and MEG and MEG e Lobe 100 100 0 100 00 10 ll Map 7 orders of magnitude t TMS TMS VSD VSD 10 10 0 10 10 0 ima ing imaging ima imag imag imag ag ag ag ging ing ing ing ing g fMRI fM fM fMR MR RI RI s Brain imaging i im mag gi ng lesions Nucleus 2-DG 2 r Micro ti Micr Mi Microstimulation osti osti mulati mula l tion tion imaging im 1 1 1 1 1 Size (mm) e O t Opto Optogenetics Opto Opto Optoge p g ge ge ge ge ene eneti ene ene ene tics tics tics tics Layer - Siz 0.1 0.1 1 0.1 0.1 Light microscopy Ligh ht m micr ros scopy s Field potentials Field potentials c Neuron Single units Sing Sing ngle u le u le units nits nits its its 0 0.01 .01 1 0.01 0.01 0 01 0 01 1 1 y Dendrite , Patch clam Patch clamp Patch clam mp mp p p 0.0 0.001 001 1 0 00 0 00 0 00 0.00 0.00 0.001 .0 0 0 0 01 Calcium imaging Elec Electron microscopy Electron tron micr n os sco opy Synapse 0.0001 0.0001 0.00 0.0001 0 0 0 0 00 00 0 0 0 001 01 01 1 11 orders of magnitude 1,000 000 00 0.0001 01 1,000 0.001 0.001 01 0.01 0.01 1 0.1 0.1 0 1 .1 1 1 1 100 00 00 0 1 1 1 1 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1, 1 0 0 0 0 1988 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 Time (s) Time (s) Millisecond Second Second Minut Minute te te Hour Hour Hour r r Day Day Day Month Month Month Sejnowski et al, Nature Neuroscience, 2014 Figure 1

  5. Memory Requirement Cellular Human Brain 100 PB Cellular Rodent Brain 100 TB Cellular Mesocircuit Plas>city O(1-10x) 1 TB Cellular Neocor>cal Column Learning O(10-100x) Development O(100-1000x) 10 GB Single Cellular Model 1 MB 1 Gigaflops 1 Petaflops 1 Exaflops 1 Teraflops ComputaHonal Complexity Subcellular detail and plas>city require advances in strong scaling !

  6. Time Scales Nature Simula>on Causality Detec>on 10 -4 s 0.1 s 1 s 1000 s Synap>c Plas>city Day 1000 Days Learning Year 1000 Years Development 12 Orders of Magnitude > 1000 Evolu>on > Millenia Millenia > 15 Orders of Magnitude

  7. Physical Model System Con>nuous Time Integra>ng Neural Cell Membrane (+ non-linearity) dV ( ) C m dt = − g leak V − E leak V(t) R = 1/ g leak g leak [S] C m [F] E leak C m Biology(*) 10 -8 10 -10 VLSI 1 0 -6 10 -13 (*) Brette/Gerstner, J. Neurophysiology, 2005 dV ∑ ∑ ( ) + ( ) ( ) c m dt = − g leak V − E l p k g k V − E x p l g l V − E i + k l p k,l (t) exponential onset and decay (PSP shape) 0 to g max (“weights”) g k,l effective membrane time-constant c m / g total is time-dependent „Time“ is imposed by internal physics, not by external control 7

  8. 10 Ra>onales for the Physical Model System Mixed-Signal (Local analog computa>on, binary spike communica>on) Ø Driven by architecture, not devices (180nm & 65nm CMOS) Ø High Neuron Input Count (>10.000) Ø Configurability (cell parameters, connec>ons) -> Universality Ø Scalability : ChipScale (10 5 ) -> WaferScale (10 8 ) -> Systems (>10 9 ) Ø Accelera>on x10.000, consistent >me constants (1 day compressed to 10 seconds) Ø Short-term und long-term Plas>city Ø Upgradability with unchanged system architecture Ø Hybrid Opera>on, closed loop experiments Ø Non-Expert User Access Ø Objec>ve : Exploit configurability and accelera>on - rapid explora>on of large parameter spaces - cover short and long >mescale circuit dynamics - perform compu>ng in the presence of spa>al and temporal noise

  9. BrainScaleS neural network wafer 200.000 AdEx neurons 50 Million synapses X10.000 accelera>on

  10. Mul>-Scale Circuit High Input Count Network Chips, 400 Structure on an 8 inch Instances on Wafer, CMOS Wafer (180nm) Length Scale 1 cm network rou>ng Plas>c Synapses, 50.000.000 Million Instances on Wafer, Length Scale 10 µm, vola>le, fast, 4-bit SRAM Weights AdEx Neurons, 200.000 Instances on Wafer, Length Scale 300 µm, NON-vola>le, slow, Analog Floa>ng Gate Parameter Storage Poisson Noise Generators

  11. Physical Model, local analogue computing, binary continuous time communication Wafer-Scale Integration of 200.000 neurons and 50.000.000 synapses on a single 20 cm wafer Short term and long term plasticity, 10.000 faster than real-time Wafer-scale integraGon of analog neural networks , J. Schemmel, J, Fieres and K. Meier In : Proceedings of IJCNN (2008), IEEE Press, 431

  12. x 20 : 2500 PCBs

  13. Scaling up 500 n / 100k s 200k n / 50m s 4m n / 1b s Big machine in commissioning phase since March 30 th 2016 Part the Human Brain Project (HBP) plaqorm system

  14. Configura>on Space 40 MB for a full Wafer

  15. Configura>on Space 40 MB for a full Wafer

  16. Challenge and Opportunity : Variability

  17. Pyloric rhythm of the crustacean stomatogastric ganglion 20.000.000 model networks created with 17 random cell parameters, fixed connec>vity (Neuron) 400.000 networks found with „iden>cal (de-generate)“ >ming behaviour in measured biological range Sensi>vity of single parameters within „de-generate“ solu>ons Marder, Taylor Nature Neuroscience 14, Nr 2, 2011

  18. Variability has to be at the right place ... Marder, Taylor Nature Neuroscience 14, Nr 2, 2011

  19. Hardware-In-the-Loop What for ? - Calibra>on - Learning - Environment - Data Separated ? Millions of parameters - network topology - neuron sizes and parameters - synap>c strengths

  20. Conven>onal Computer calibra>on, learning, virtual environment, data Configure, load Neuromorphic Machines Read

  21. Calibra>on Make BrainScaleS like a digital simulator ? OR Put variabiity at the right place ! By hand ? – By self learning ! Sebas>an Schmit, Paul Müller

  22. APer hardware in-the-loop calibra>on Sebas>an Schmit et al., accepted IJCNN 2017

  23. Feed-forward, rate-based. 4-layer spiking network MNIST classifica>on on a physical model machine performance before and aPer hardware in-the-loop learning Sebas>an Schmit et al., accepted IJCNN 2017, ISCAS 2017

  24. MNIST classifica>on on a physical model machine Neuronal firing ac>vity aPer hardware in-the-loop learning label input 2 x hidden Sebas>an Schmit et al., accepted JCNN 2017, ISCAS 2017

  25. Time Scales Nature + Accelerated Simula>on Real->me Model 10 -4 s 0.1 s 10 -8 s Causality Detec>on Synap>c Plas>city 1 s 1000 s 10 -4 s Day 1000 Days 10 s Learning Year 1000 Years 3000 s Development 12 Orders of Magnitude > 1000 > Millenia > Months Evolu>on Millenia > 15 Orders of Magnitude

  26. BrainScaleS-2 New key features 62 nm prototype chip in the lab Ø Improved parameter storage Ø Hybrid plas>city by on-chip processor : on-chip loops Input : >ming correla>ons, rates, § membrane poten>als, external signals Change : synap>c weights, network § topology, neuron parameters Ø Structured neurons NMDA plateau poten>als create non- • linear dendrites Calcium spikes for coincidence • detec>on between basal and distal Ø Evalua>on system by inputs mid-2018 Na spikes (ac>on poten>als) • communicate with other neurons Ø Full-size prototypes and wafer masks by mid-2020

  27. Final Thoughts Ø After 10 years of development the BrainScaleS large scale physical hardware system is being commissioned and delivers first results Ø Fully non-Turing, physical model computing can solve established machine learning tasks Ø 2 nd generation physical model systems start to offer very advanced accelerated local learning capabilities and exploitation of dendritic computation Goal : Build a continuously learning cognitive machine

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend