the bi objective multi vehicle covering tour problem
play

The Bi-objective Multi-Vehicle Covering Tour Problem (BOMCTP): - PowerPoint PPT Presentation

The Bi-objective Multi-Vehicle Covering Tour Problem (BOMCTP): formulation and lower-bound computation B.M. SARPONG C. ARTIGUES N. JOZEFOWIEZ LAAS-CNRS 13/04/2012 Outline 1 Introduction 2 Mathematical formulation of the BOMCTP 3 Column


  1. The Bi-objective Multi-Vehicle Covering Tour Problem (BOMCTP): formulation and lower-bound computation B.M. SARPONG C. ARTIGUES N. JOZEFOWIEZ LAAS-CNRS 13/04/2012

  2. Outline 1 Introduction 2 Mathematical formulation of the BOMCTP 3 Column generation for a bi-objective integer problem 4 Lower bound for the BOMCTP 5 Conclusions and perspectives 1 / 18

  3. The Covering Tour Problem [Gendreau et al. , 1997] Find a minimal-length tour on V ′ ⊆ V such that the nodes of W are covered by those of V ′ . May be visited V MUST be visited : T MUST be covered : W Vehicle route Cover 2 / 18

  4. The Multi-Vehicle CTP [Hachicha et al. , 2000] Find a set of at most m tours on V ′ ⊆ V , having minimum total length and such that the nodes of W are covered by those of V ′ . The length of each route cannot exceed a preset value p . The number of vertices on each route cannot exceed a preset value q . May be visited V MUST be visited : T MUST be covered : W Vehicle routes Cover distance 3 / 18

  5. Description of the BOMCTP Problem Given a graph G = ( V ∪ W , E ) with T ⊆ V , design a set of vehicle routes on V ′ ⊆ V . Objectives Minimize the total length of the set of routes. Minimize the cover distance induced by the set of routes. Constraints Each vertex of T must belong to a vehicle route. Each vertex of W must be covered. The length of each route cannot exceed a preset value p . The number of vertices on each route cannot exceed a preset value q . 4 / 18

  6. A set-covering model for the BOMCTP Variables Ω : set of all feasible routes r k ∈ Ω : feasible route k c k : cost of route r k θ k : 1 if route r k is selected in solution and 0 otherwise z ij : 1 if vertex v j ∈ V is used to cover vertex w i ∈ W and 0 otherwise a ik : 1 if r k uses vertex v i ∈ V and 0 otherwise Cov max : cover distance induced by a set of routes Objective functions � minimize c k θ k r k ∈ Ω minimize Cov max 5 / 18

  7. A set-covering model for the BOMCTP Constraints � − z ij + a jk θ k ≥ 0 ( w i ∈ W , v j ∈ V ) r k ∈ Ω � a jk θ k ≥ 1 ( v j ∈ T ) r k ∈ Ω Cov max − c ij z ij ≥ 0 ( w i ∈ W , v j ∈ V ) � ≥ 1 ( w i ∈ W ) z ij v j ∈ V Cov max ≥ 0 ∈ { 0 , 1 } ( w i ∈ W , v j ∈ V ) z ij θ k ∈ { 0 , 1 } ( r k ∈ Ω) 6 / 18

  8. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 f 1 7 / 18

  9. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 f 1 lb 1 7 / 18

  10. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 f 1 lb 1 7 / 18

  11. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 lb 2 f 1 lb 1 7 / 18

  12. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 lb 2 f 1 lb 1 7 / 18

  13. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 ideal point lb 2 f 1 lb 1 7 / 18

  14. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 ideal point lb 2 f 1 lb 1 7 / 18

  15. Column generation for a bi-objective integer problem Problem minimize ( c 1 x , c 2 x ) Ax ≥ b x ≥ 0 and integer Procedure Transform bi-objective problem into a single-objective one by means of ε -constraint scalarization. Solve the linear relaxation of the problem obtained for different values of ε by means of column generation. 8 / 18

  16. Scalarization by ε -constraint Master Problem minimize c 1 x Ax ≥ b − c 2 x ≥ − ε x ≥ 0 Dual maximize by 1 − ε y 2 Ay 1 − c 2 y 2 ≤ c 1 y 1 , y 2 ≥ 0 9 / 18

  17. Approach 1: point-by-point search f2 ε 0 f1 10 / 18

  18. Approach 1: point-by-point search f2 ε 0 f1 10 / 18

  19. Approach 1: point-by-point search f2 ε 0 f1 10 / 18

  20. Approach 1: point-by-point search f2 ε 0 f1 10 / 18

  21. Approach 1: point-by-point search f2 ε 0 ε 1 f1 10 / 18

  22. Approach 1: point-by-point search f2 ε 0 ε 1 f1 10 / 18

  23. Approach 1: point-by-point search f2 ε 0 ε 1 f1 10 / 18

  24. Approach 1: point-by-point search f2 ε 0 ε 1 f1 10 / 18

  25. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 f1 10 / 18

  26. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 f1 10 / 18

  27. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 f1 10 / 18

  28. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 f1 10 / 18

  29. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 ε k-1 f1 10 / 18

  30. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 ε k-1 f1 10 / 18

  31. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 ε k-1 f1 10 / 18

  32. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 ε k-1 f1 10 / 18

  33. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 ε k-1 f1 10 / 18

  34. Approach 1: point-by-point search f2 ε 0 ε 1 ε 2 ε k-1 ε k f1 10 / 18

  35. Approach 2: parallel search 1 f2 ε 0 f1 11 / 18

  36. Approach 2: parallel search 1 f2 ε 0 ε 1 f1 11 / 18

  37. Approach 2: parallel search 1 f2 ε 0 ε 1 ε 2 f1 11 / 18

  38. Approach 2: parallel search 1 f2 ε 0 ε 1 ε 2 ε 3 f1 11 / 18

  39. Approach 2: parallel search 1 f2 ε 0 ε 1 ε 2 ε 3 ε k-1 ε k f1 11 / 18

  40. Approach 2: parallel search 1 f2 generate m/k columns for RMP ε 0 generate m/k ε 1 columns for RMP generate m/k ε 2 columns for RMP generate m/k ε 3 columns for RMP generate m/k columns for RMP generate m/k columns for RMP ε k-1 ε k f1 11 / 18

  41. Approach 2: parallel search 1 f2 ε 0 ε k f1 11 / 18

  42. Approach 2: parallel search 1 f2 ε 0 ε k f1 11 / 18

  43. Approach 2: parallel search 1 f2 ε 0 ε 1 1 ε k f1 11 / 18

  44. Approach 2: parallel search 1 f2 ε 0 ε 1 1 ε 2 1 ε k f1 11 / 18

  45. Approach 2: parallel search 1 f2 ε 0 ε 1 1 ε 2 1 ε 3 1 ε k-1 1 ε k f1 11 / 18

  46. Approach 3: parallel search 2 f2 ε 0 f1 12 / 18

  47. Approach 3: parallel search 2 f2 generate m columns for RMP ε 0 f1 12 / 18

  48. Approach 3: parallel search 2 f2 ε 0 f1 12 / 18

  49. Approach 3: parallel search 2 f2 ε 0 ε 1 f1 12 / 18

  50. Approach 3: parallel search 2 f2 ε 0 generate m columns for RMP ε 1 f1 12 / 18

  51. Approach 3: parallel search 2 f2 ε 0 ε 1 f1 12 / 18

  52. Approach 3: parallel search 2 f2 ε 0 ε 1 ε 2 f1 12 / 18

  53. Approach 3: parallel search 2 f2 ε 0 ε 1 generate m columns for RMP ε 2 f1 12 / 18

  54. Approach 3: parallel search 2 f2 ε 0 ε 1 ε 2 f1 12 / 18

  55. Approach 3: parallel search 2 f2 ε 0 ε 1 ε 2 ε k-1 ε k f1 12 / 18

  56. The Restricted Master Problem (RMP) � minimize c k θ k r k ∈ Ω 1 Constraints � − z ij + a jk θ k ≥ 0 ( w i ∈ W , v j ∈ V ) r k ∈ Ω 1 � a jk θ k ≥ 1 ( v j ∈ T ) r k ∈ Ω 1 Cov max − c ij z ij ≥ 0 ( w i ∈ W , v j ∈ V ) � ≥ 1 ( w i ∈ W ) z ij v j ∈ V − Cov max ≥ − ε 13 / 18

  57. The Restricted Master Problem (RMP) � minimize c k θ k r k ∈ Ω 1 Constraints dual variables � − z ij + a jk θ k ≥ 0 ( w i ∈ W , v j ∈ V ) α ij r k ∈ Ω 1 � a jk θ k ≥ 1 ( v j ∈ T ) ϕ j r k ∈ Ω 1 Cov max − c ij z ij ≥ 0 ( w i ∈ W , v j ∈ V ) γ ij � z ij ≥ 1 ( w i ∈ W ) β i v j ∈ V − Cov max ≥ − ε λ 13 / 18

  58. Dual of RMP � � maximize − ελ + β i + ϕ j w i ∈ W v j ∈ T subject to: � � a jk α ij + a jk ϕ j ≤ c k ( r k ∈ Ω 1 ) w i ∈ W v j ∈ T v j ∈ V � − λ + ≤ 0 γ ij w i ∈ W v j ∈ V − c ij γ ij + β i − α ij ≤ 0 ( w i ∈ W , v j ∈ V ) 14 / 18

  59. Definition of sub-problem � � Find routes such that c k − a jk α ij − a jk ϕ j < 0 . w i ∈ W v j ∈ T v j ∈ V Let α ∗ hj = α hj if v j ∈ V , w h ∈ W and 0 otherwise. Let ϕ ∗ j = ϕ j if v j ∈ T and 0 otherwise. Let A be the set of arcs formed between two nodes of V . Let x ijk = 1 if route r k uses arc ( v i , v j ) and 0 otherwise. � � Note : c k = and a jk = x ijk c ij x ijk ( v i , v j ) ∈ A { v i ∈ V | ( v i , v j ) ∈ A } � � � α ∗ � ϕ ∗ c ij x ijk − hj x ijk − j x ijk < 0 . So ( v i , v j ) ∈ A ( v i , v j ) ∈ A v h ∈ W ( v i , v j ) ∈ A 15 / 18

  60. Definition of sub-problem � � � c ij − ϕ ∗ � α ∗ j − x ijk < 0 . hj ( v i , v j ) ∈ A v h ∈ W Sub-problem Find elementary paths from the depot to the depot with a negative cost, satisfying the constraints of length and maximum number of vertices on a path. Costs are set to c ij − ϕ ∗ α ∗ � j − hj . v h ∈ W An elementary shortest path problem with resource constraints Solved by the Decremental State Space Relaxation (DSSR) algorithm [Righini and Salani, 2008]. 16 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend