the bi objective multi vehicle covering tour problem
play

The Bi-objective Multi-Vehicle Covering Tour Problem: formulation - PowerPoint PPT Presentation

The Bi-objective Multi-Vehicle Covering Tour Problem: formulation and lower-bound computation B.M. Sarpong C. Artigues N. Jozefowiez LAAS-CNRS / Universit e de Toulouse, France 25/05/2012 Outline 1 Multi-objective optimization problems 2


  1. The Bi-objective Multi-Vehicle Covering Tour Problem: formulation and lower-bound computation B.M. Sarpong C. Artigues N. Jozefowiez LAAS-CNRS / Universit´ e de Toulouse, France 25/05/2012

  2. Outline 1 Multi-objective optimization problems 2 Column generation for a bi-objective integer problem 3 The Bi-Objective Multi-Vehicle Covering Tour Problem 4 Computational results 5 Conclusions 1 / 24

  3. Definition of a multi-objective optimization problem � min F ( x ) = ( f 1 ( x ) , f 2 ( x ) , . . . , f n ( x )) ( MOP ) = s . t . x ∈ Ω where : n ≥ 2 : number of objective functions F = ( f 1 , f 2 , . . . , f n ) : vector of objective functions Ω ⊆ R m : feasible set of solutions Y = F (Ω) : feasible set in objective space x = ( x 1 , x 2 , . . . , x m ) ∈ Ω : variable vector, variables y = ( y 1 , y 2 , . . . , y n ) ∈ Y with y i = f i ( x ) : vector of objective function values 2 / 24

  4. Dominance and Pareto Optimality A solution x dominates ( � ) another solution y if and only if ∀ i ∈ { 1 , . . . , n } , f i ( x ) ≤ f i ( y ) and ∃ i ∈ { 1 , . . . , n } such that f i ( x ) < f i ( y ) . f2 A B D C E f1 Pareto optimal solution A solution is said to be Pareto optimal if no other feasible solution dominates it. 3 / 24

  5. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 f 1 4 / 24

  6. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 f 1 lb 1 4 / 24

  7. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 f 1 lb 1 4 / 24

  8. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 lb 2 f 1 lb 1 4 / 24

  9. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 lb 2 f 1 lb 1 4 / 24

  10. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 ideal point lb 2 f 1 lb 1 4 / 24

  11. Lower bound of a MOIP [Villarreal and Karwan, 1981] f 2 ideal point lb 2 f 1 lb 1 4 / 24

  12. Column generation for a bi-objective integer problem Problem minimize ( c 1 x , c 2 x ) Ax ≥ b x ≥ 0 and integer Procedure Transform bi-objective problem into a single-objective one by means of ε -constraint scalarization. Solve the linear relaxation of the problem obtained for different values of ε by means of column generation. 5 / 24

  13. Scalarization by ε -constraint Master Problem minimize c 1 x Ax ≥ b − c 2 x ≥ − ε x ≥ 0 Dual maximize by 1 − ε y 2 Ay 1 − c 2 y 2 ≤ c 1 y 1 , y 2 ≥ 0 6 / 24

  14. Approaches to compute the lower bound of a BOIP by CG Approaches Approach 1: standard Approach 2: sequential search Approach 3: parallel search 1 parallel search 2 Performance indicator Execution time (CPU seconds) 7 / 24

  15. Approach 1: standard 8 / 24

  16. Approach 1: standard f2 ε 0 f1 8 / 24

  17. Approach 1: standard f2 ε 0 f1 8 / 24

  18. Approach 1: standard f2 ε 0 f1 8 / 24

  19. Approach 1: standard f2 ε 0 ε 1 f1 8 / 24

  20. Approach 1: standard f2 ε 0 ε 1 f1 8 / 24

  21. Approach 1: standard f2 ε 0 ε 1 ε 2 f1 8 / 24

  22. Approach 1: standard f2 ε 0 ε 1 ε 2 f1 8 / 24

  23. Approach 1: standard f2 ε 0 ε 1 ε 2 f1 8 / 24

  24. Approach 1: standard f2 ε 0 ε 1 ε 2 ε k-1 ε k f1 8 / 24

  25. Approach 2: sequential search (1 iteration of CG at each step) 9 / 24

  26. Approach 2: sequential search (1 iteration of CG at each step) f2 ε 0 f1 9 / 24

  27. Approach 2: sequential search (1 iteration of CG at each step) f2 ε 0 f1 9 / 24

  28. Approach 2: sequential search (1 iteration of CG at each step) f2 ε 0 ε 1 f1 9 / 24

  29. Approach 2: sequential search (1 iteration of CG at each step) f2 ε 0 ε 1 f1 9 / 24

  30. Approach 2: sequential search (1 iteration of CG at each step) f2 ε 0 ε 1 ε 2 ε k-1 ε k f1 9 / 24

  31. Approach 3: parallel search 1 10 / 24

  32. Approach 3: parallel search 1 f2 ε 0 ε 1 0 ε 2 0 ε k-1 0 ε k f1 10 / 24

  33. Approach 3: parallel search 1 f2 generate m/k columns ε 0 generate m/k ε 1 0 columns generate m/k ε 2 0 columns generate m/k columns generate m/k columns ε k-1 0 ε k f1 10 / 24

  34. Approach 3: parallel search 1 f2 ε 0 ε k f1 10 / 24

  35. Approach 3: parallel search 1 f2 ε 0 ε 1 1 ε 2 1 ε k-1 1 ε k f1 10 / 24

  36. Approach 3: parallel search 2 f2 ε 0 ε 1 0 ε 2 0 ε k-1 0 ε k f1 11 / 24

  37. Approach 3: parallel search 2 f2 generate n columns ε 0 ε 1 0 skip ε 2 0 skip generate n columns skip ε k-1 0 ε k f1 11 / 24

  38. Approach 3: parallel search 2 f2 ε 0 ε k f1 11 / 24

  39. Approach 3: parallel search 2 f2 ε 0 ε 1 1 ε 2 1 ε k-1 1 ε k f1 11 / 24

  40. The Covering Tour Problem [Gendreau et al. , 1997] Find a minimal-length route on V ′ ⊆ V such that the nodes of W are covered by those of V ′ . May be visited V MUST be visited : T MUST be covered : W Vehicle route Cover 12 / 24

  41. The Multi-Vehicle CTP [Hachicha et al. , 2000] Find a set of at most m routes on V ′ ⊆ V , having minimum total length and such that the nodes of W are covered by those of V ′ . Each node of T ⊆ V ′ must be used by a route. The length of each route cannot exceed a preset value p . The number of nodes on each route cannot exceed a preset value q . May be visited V MUST be visited : T MUST be covered : W Vehicle routes Cover distance 13 / 24

  42. Description of the BOMCTP Problem Given a graph G = ( V ∪ W , E ) with T ⊆ V , design a set of vehicle routes on V ′ ⊆ V . Objectives Minimize the total length of the set of routes. Minimize the cover distance induced by the set of routes. Constraints Each node of T must belong to a vehicle route. The length of each route cannot exceed a preset value p . The number of nodes on each route cannot exceed a preset value q . 14 / 24

  43. The cover distance induced by a set of routes 15 / 24

  44. The cover distance induced by a set of routes 15 / 24

  45. The cover distance induced by a set of routes 15 / 24

  46. The cover distance induced by a set of routes 15 / 24

  47. The cover distance induced by a set of routes 15 / 24

  48. The cover distance induced by a set of routes 15 / 24

  49. The cover distance induced by a set of routes 15 / 24

  50. A set-covering model for the BOMCTP Variables Ω : set of all feasible routes r k ∈ Ω : feasible route k c k : cost of route r k θ k : 1 if route r k is selected in solution and 0 otherwise z ij : 1 if node v j ∈ V ∗ ( V \{ v 0 } ) is used to cover node w i ∈ W and 0 otherwise a ik : 1 if r k uses node v i ∈ V ∗ and 0 otherwise Cov max : cover distance induced by a set of routes Objective functions � minimize c k θ k r k ∈ Ω minimize Cov max 16 / 24

  51. A set-covering model for the BOMCTP Constraints ( w i ∈ W , v j ∈ V ∗ ) � − z ij + a jk θ k ≥ 0 r k ∈ Ω � ( v j ∈ T ∗ ) a jk θ k ≥ 1 r k ∈ Ω ( w i ∈ W , v j ∈ V ∗ ) Cov max − c ij z ij ≥ 0 � ≥ 1 ( w i ∈ W ) z ij v j ∈ V ∗ Cov max ≥ 0 ( w i ∈ W , v j ∈ V ∗ ) z ij ∈ { 0 , 1 } θ k ∈ { 0 , 1 } ( r k ∈ Ω) 17 / 24

  52. The Restricted Master Problem (RMP) � minimize c k θ k r k ∈ Ω 1 Constraints ( w i ∈ W , v j ∈ V ∗ ) � − z ij + a jk θ k ≥ 0 r k ∈ Ω 1 � ( v j ∈ T ∗ ) a jk θ k ≥ 1 r k ∈ Ω 1 ( w i ∈ W , v j ∈ V ∗ ) Cov max − c ij z ij ≥ 0 � ≥ 1 ( w i ∈ W ) z ij v j ∈ V ∗ − Cov max ≥ − ε 18 / 24

  53. The Restricted Master Problem (RMP) � minimize c k θ k r k ∈ Ω 1 Constraints dual variables � ( w i ∈ W , v j ∈ V ∗ ) − z ij + a jk θ k ≥ 0 α ij r k ∈ Ω 1 ( v j ∈ T ∗ ) � a jk θ k ≥ 1 ϕ j r k ∈ Ω 1 ( w i ∈ W , v j ∈ V ∗ ) Cov max − c ij z ij ≥ 0 γ ij � z ij ≥ 1 ( w i ∈ W ) β i v j ∈ V ∗ − Cov max ≥ − ε λ 18 / 24

  54. Dual of RMP � � maximize − ελ + β i + ϕ j w i ∈ W v j ∈ T ∗ subject to: � � a jk α ij + a jk ϕ j ≤ c k ( r k ∈ Ω 1 ) w i ∈ W v j ∈ T ∗ v j ∈ V ∗ � − λ + ≤ 0 γ ij w i ∈ W v j ∈ V ∗ ( w i ∈ W , v j ∈ V ∗ ) − c ij γ ij + β i − α ij ≤ 0 19 / 24

  55. Definition of sub-problem � � Find routes such that c k − a jk α ij − a jk ϕ j < 0 w i ∈ W v j ∈ T ∗ v j ∈ V ∗ Let α ∗ hj = α hj if v j ∈ V ∗ , w h ∈ W and 0 otherwise. j = ϕ j if v j ∈ T ∗ and 0 otherwise. Let ϕ ∗ Let A be the set of arcs formed between two nodes of V . Let x ijk = 1 if route r k uses arc ( v i , v j ) and 0 otherwise. � � Note : c k = x ijk c ij and a jk = x ijk ( v i , v j ) ∈ A { v i ∈ V | ( v i , v j ) ∈ A } � � � α ∗ � ϕ ∗ c ij x ijk − hj x ijk − j x ijk < 0 So ( v i , v j ) ∈ A ( v i , v j ) ∈ A v h ∈ W ( v i , v j ) ∈ A 20 / 24

  56. Definition of sub-problem � � � c ij − ϕ ∗ � α ∗ j − x ijk < 0 hj ( v i , v j ) ∈ A v h ∈ W Sub-problem Find elementary paths from the depot to the depot with a negative cost, satisfying constraints on the length and the maximum number of nodes visited by a path. Costs are set to c ij − ϕ ∗ � α ∗ j − hj v h ∈ W An elementary shortest path problem with resource constraints 21 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend