the behavioral approach to systems theory
play

The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of - PowerPoint PPT Presentation

The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U. Leuven, Belgium MTNS 2006 Kyoto, Japan, July 2428, 2006 Lecture 6: System Identification Lecturer: Jan C. Willems Issues to


  1. The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U. Leuven, Belgium MTNS 2006 Kyoto, Japan, July 24–28, 2006

  2. Lecture 6: System Identification Lecturer: Jan C. Willems

  3. Issues to be discussed • Remarks on deterministic versus stochastic system identification.

  4. Issues to be discussed • Remarks on deterministic versus stochastic system identification. • Deterministic SYSID via the notion of the most powerful unfalsified model (MPUM)

  5. Issues to be discussed • Remarks on deterministic versus stochastic system identification. • Deterministic SYSID via the notion of the most powerful unfalsified model (MPUM) • What is subspace identification? • Algorithms for state construction • by past/future intersection • (by oblique projection) • by recursive annihilator computation

  6. General Introduction

  7. SYSID MODEL CLASS OBSERVED DATA MATHEMATICAL MODEL Basic difficulties: trade-off between overfitting and predictability learning essential features / rejecting non-essential ones

  8. SYSID Data: an ‘observed’ vector time-series w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ w ( T ) w ( t ) ∈ R w T finite, infinite, or T → ∞ ⇓ A dynamical model from a model class, e.g. a LTIDS R 0 w ( t ) + R 1 w ( t + 1 ) + · · · + R L w ( t + L ) = 0 or R 0 w ( t ) + R 1 w ( t + 1 ) + · · · + R L w ( t + L ) = M 0 ε ( t ) + · · · + M L ε ( t + L )

  9. SYSID ‘deterministic’ ID observed variables MODEL w Model class: R 0 w ( t ) + R 1 w ( t + 1 ) + · · · + R L w ( t + L ) = 0 SYSID algorithm: R 0 , ˆ ˆ R 1 , . . . , ˆ w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ w ( T ) �→ R ˆ L

  10. SYSID ‘deterministic’ ID: I/O form observed observed variables variables MODEL u y Model class (with i/o partition): P 0 y ( t ) + · · · + P L y ( t + L ) = Q 0 u ( t ) + · · · + Q L u ( t + L ) , � u � , Π permutation , P ( ξ ) − 1 Q ( ξ ) proper w = Π y SYSID algorithm: Q 0 , ˆ ˆ Q 1 , · · · , ˆ P 0 , ˆ ˆ P 1 , · · · , ˆ w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ w ( T ) �→ P ˆ L ; Q ˆ L

  11. SYSID ID with unobserved latent inputs observed observed variables variables MODEL u y latent ! variables Model class: (unobserved) R 0 w ( t ) + R 1 w ( t + 1 ) + · · · + R L w ( t + L ) = M 0 ε ( t ) + M 1 ε ( t + 1 ) + · · · + M L ε ( t + L ) P 0 y ( t ) + · · · + P L y ( t + L ) = Q 0 u ( t ) + · · · + Q L u ( t + L ) + M 0 ε ( t ) + · · · + M L ε ( t + L ) SYSID algorithm (e.g. PEM): � ˆ R ( ξ ) , ˆ w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ � w ( T ) �→ M ( ξ ) Usual assumption: w , ε stochastic.

  12. SYSID ID with unobserved latent inputs observed observed variables variables MODEL u y Why (unobserved) stochastic inputs? latent ! variables Model class: (unobserved) Why stochastics? R 0 w ( t ) + R 1 w ( t + 1 ) + · · · + R L w ( t + L ) = M 0 ε ( t ) + M 1 ε ( t + 1 ) + · · · + M L ε ( t + L ) P 0 y ( t ) + · · · + P L y ( t + L ) Is this physics? = Q 0 u ( t ) + · · · + Q L u ( t + L ) + M 0 ε ( t ) + · · · + M L ε ( t + L ) SYSID algorithm (e.g. PEM): � ˆ R ( ξ ) , ˆ w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ � w ( T ) �→ M ( ξ ) Usual assumption: w , ε stochastic.

  13. SYSID Assumptions: • Data: w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ w ( t ) ∈ R w w ( t ) , . . . T infinite

  14. SYSID Assumptions: • Data: w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ w ( t ) ∈ R w w ( t ) , . . . T infinite • Deterministic SYSID

  15. SYSID Assumptions: • Data: w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ w ( t ) ∈ R w w ( t ) , . . . T infinite • Deterministic SYSID • Exact modeling with an eye towards approximation

  16. SYSID Assumptions: • Data: w ( 1 ) , ˜ ˜ w ( 2 ) , . . . , ˜ w ( t ) ∈ R w w ( t ) , . . . T infinite • Deterministic SYSID • Exact modeling with an eye towards approximation From the simple to the complex! Approximate Deterministic Exact Approximate Deterministic Stochastic Exact Stochastic

  17. The MPUM The exact deterministic SYSID principle

  18. Most Powerful & Unfalsified • A model:= a subset B ⊆ ( R w ) N , the ‘behavior’ A family of (vector) time series

  19. Most Powerful & Unfalsified • A model:= a subset B ⊆ ( R w ) N , the ‘behavior’ • B is unfalsified by ˜ w : ⇔ ˜ w ∈ B � ˜ ˜ w ( 1 ) , ˜ w ( 2 ) , . . . , ˜ � w = w ( t ) , . . .

  20. Most Powerful & Unfalsified • A model:= a subset B ⊆ ( R w ) N , the ‘behavior’ • B is unfalsified by ˜ w : ⇔ ˜ w ∈ B B 1 is more powerful than B 2 : ⇔ B 1 ⊂ B 2 • Every model is prohibition. The more a model forbids, the better it is. Karl Popper (1902-1994)

  21. Most Powerful & Unfalsified • A model:= a subset B ⊆ ( R w ) N , the ‘behavior’ • B is unfalsified by ˜ w : ⇔ ˜ w ∈ B B 1 is more powerful than B 2 : ⇔ B 1 ⊂ B 2 • • A model class: a family, B , of models, e.g. L w .

  22. Most Powerful & Unfalsified • A model:= a subset B ⊆ ( R w ) N , the ‘behavior’ • B is unfalsified by ˜ w : ⇔ ˜ w ∈ B B 1 is more powerful than B 2 : ⇔ B 1 ⊂ B 2 • • A model class: a family, B , of models, e.g. L w . • The MPUM ‘most powerful unfalsified model’ in B for w , denoted B ∗ ˜ w : ˜ 1. B ∗ w ∈ B ˜ 2. ˜ w ∈ B ∗ ˜ w 3. B ∈ B and ˜ w ∈ B ⇒ B ∗ w ⊆ B ˜

  23. Most Powerful & Unfalsified • A model:= a subset B ⊆ ( R w ) N , the ‘behavior’ • B is unfalsified by ˜ w : ⇔ ˜ w ∈ B B 1 is more powerful than B 2 : ⇔ B 1 ⊂ B 2 • • A model class: a family, B , of models, e.g. L w . • The MPUM ‘most powerful unfalsified model’ in B for w , denoted B ∗ ˜ w : ˜ 1. B ∗ w ∈ B MPUM ˜ 2. ˜ w ∈ B ∗ Unfalsified ˜ w 3. B ∈ B and ˜ w ∈ B Falsified ⇒ B ∗ w ⊆ B ˜ OBSERVED DATA

  24. Most Powerful & Unfalsified • A model:= a subset B ⊆ ( R w ) N , the ‘behavior’ • B is unfalsified by ˜ w : ⇔ ˜ w ∈ B B 1 is more powerful than B 2 : ⇔ B 1 ⊂ B 2 • • A model class: a family, B , of models, e.g. L w . • The MPUM ‘most powerful unfalsified model’ in B for w , denoted B ∗ ˜ w : ˜ 1. B ∗ w ∈ B ˜ 2. ˜ w ∈ B ∗ ˜ w 3. B ∈ B and ˜ w ∈ B ⇒ B ∗ w ⊆ B ˜ w and B , does B ∗ Given ˜ w exist? • ˜ • ‘Exact’ SYSID: Construct algorithms ˜ w �→ B ∗ w ˜

  25. The Model Class Exceedingly familiar: The model B ⊆ ( R w ) N belongs to L w : ⇔ • B is linear, shift-invariant, and closed • B is linear, time-invariant, and complete : ⇔ ‘prefix determined’

  26. The Model Class Exceedingly familiar: The model B ⊆ ( R w ) N belongs to L w : ⇔ • B is linear, shift-invariant, and closed • B is linear, time-invariant, and complete : ⇔ ‘prefix determined’ • ∃ matrices R 0 , R 1 , . . . , R L such that B : all w that satisfy R 0 w ( t ) + R 1 w ( t + 1 ) + · · · + R L w ( t + L ) = 0 ∀ t ∈ N In the obvious polynomial matrix notation R ( σ ) w = 0 • Including input/output partition � u w ∼ � P ( σ ) y = Q ( σ ) u , = det ( P ) � = 0 y

  27. The Model Class Exceedingly familiar: The model B ⊆ ( R w ) N belongs to L w : ⇔ • B is linear, shift-invariant, and closed • B is linear, time-invariant, and complete : ⇔ ‘prefix determined’ R ( σ ) w = 0 • � u w ∼ � P ( σ ) y = Q ( σ ) u , = • y • ∃ matrices A , B , C , D such that B consists of all w ′ s generated by � u w ∼ � x ( t + 1 ) = Ax ( t ) + Bu ( t ) , y ( t ) = Cx ( t ) + Du ( t ) , = y

  28. The Model Class Exceedingly familiar: The model B ⊆ ( R w ) N belongs to L w : ⇔ • B is linear, shift-invariant, and closed • B is linear, time-invariant, and complete : ⇔ ‘prefix determined’ R ( σ ) w = 0 • � u w ∼ � P ( σ ) y = Q ( σ ) u , = • y � u w ∼ � σ x = Ax + Bu , y = Cx + Du , = • y • ∃ a matrix of rational functions G such that B = sol’ns of G ( σ ) w = 0 without LOG strictly proper with LOG (stabilizability) proper stable rational.

  29. The lag L : L w → Z + , L ( B ) = smallest L such that there is a kernel repr.: R 0 w ( t ) + R 1 w ( t + 1 ) + · · · + R L w ( t + L ) = 0 . Polynomial matrix in R ( σ ) w = 0 has degree ( R ) ≤ L . One the important ‘integer invariants’: maps : L w → Z + , . Others: m , p , n : number of inputs, outputs, states, ν 1 , · · · , ν p : (kernel) lag indices, observability indices, κ 1 , · · · , κ m : (image) lag indices, controllability indices.

  30. The MPUM in L w Theorem: For infinite obs. interval, T = ∞ (our case), w in L w exists. the MPUM for ˜ In fact, w , σ 2 ˜ B ∗ w , . . . } ) closure w = span ( { ˜ w , σ ˜ ˜ Same is true for model class L w with lag ≤ ℓ . We are looking for effective computational algorithms to go from ˜ w to (a representation of) B ∗ w , ˜ e.g., a kernel representation ❀ the corresponding R ; e.g. a generating set of annihilators � A B � of an i/s/o representation of B ∗ e.g., the matrices w . C D ˜

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend