quantum transport in inas gasb
play

Quantum Transport in InAs/GaSb Wei Pan Sandia National Laboratories - PowerPoint PPT Presentation

Quantum Transport in InAs/GaSb Wei Pan Sandia National Laboratories Albuquerque, New Mexico, USA Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin


  1. Quantum Transport in InAs/GaSb Wei Pan Sandia National Laboratories Albuquerque, New Mexico, USA Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE -AC04-94AL85000.

  2. Outline • InAs/GaSb heterostructure • The experiments and results – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction – Giant supercurrent in a Ta-InAs/GaSb-Ta junction • Summary

  3. InAs/GaSb heterostructure: D E g0 Quantum spin Hall effect C.X. Liu, T.L. Hughes, X.L. Qi, K. Wang, and S.C. Zhang, Phys. Rev. Lett. 100 , 236601 (2008).

  4. Outline • InAs/GaSb heterostructure • The experiment and results – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction – Giant supercurrent in a Ta-InAs/GaSb-Ta junction • Summary

  5. Field-effect transistor: Growth structure: Yang et al, Appl. Phys. Lett. 69 , 85 (1996). air --------------------- InAs 20A (or GaSb 20A) ---------------- AlSb 500A ------------------------ GaSb QW 50A AlSb ------------------------- InAs QW 150A GaSb buffer on p-type GaSb --------------------- AlSb 1um --------------- GaSb 1um --------------- D GaSb substrate (p-doped) E g0

  6. R xy R xx V g I

  7. Electron transport at zero magnetic field: B = 0 T D 6 T ~ 25 mK E g0 4 R xx (k  ) 2 0 -10 -5 0 5 10 V g (V)

  8. 15 T ~ 25 mK B = 0 T 2 /h) 10 G xx (e 2 /h 5 4e -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 V g (V)

  9. s th xx  e 2 /h  E g0 / D Y. Naveh and B. Laikhtman, Europhys. Lett. 55 , 545 (2001). D E g0 ~ 15 meV E g0 D ~ 1 meV s th xx  15 e 2 /h G th xx = 5 e 2 /h ~ 4 e 2 /h

  10. 4.3 G xx = 3.97 + 0.10  log (T) 2 /h) 4.2 G xx (e 4.1 10 100 1000 T (mK) L.J. Cooper et al, Phys. Rev. B 57 11915 (1998)

  11. Electron transport at low magnetic fields: B = 2 T 0.04  =16 R xx (arb. units) 0.02 22 28 34 0.00 2 3 4 5 6 7 8 9 10 V g (T)

  12. 15 n=3.93+1.35xV g 10 CNP -2 ) 11 cm 5 n, p (10 0 -5 p=2.65+1.31xV g -10 -10 -5 0 5 10 V g (V) At charge neutrality point CNP (n + p =0) |n| = |p| ~ 0.6  10 11 cm -2

  13. s xy B = 5T 12 4 56 s xx 2 /h) 8  e =12 s xx , s xy (e 2 4 1 0 -4  h =-2 -4 -6 -3 0 3 6 V g (V)

  14. Electron transport at high magnetic fields: 4  e =3 2 2 /h) 2  h s xx & s xy (e 1 -1 -2 0 B = 20 T T ~ 30 mK -2 -10 -5 0 5 10 V g (V)

  15. 8 7 6 5 2 /h) s xx (e 4 3 2 1 0 -4 -3 -2 -1 0 1 2 3 4 2 /h) s xy (e ( s xx – N) 2 + s xy 2 = N 2

  16. Semi-Circular conductivity law in quantum Hall plateau transition ( s xy –  /2) 2 + s xx 2 = (  /2) 2 independently of r xx M. Hilke et al, Nature (1998)

  17. r xx = h/e 2 /(2N) ( s xx – N) 2 + s xy 2 = N 2 1.0 2  e =1 3 0.5 2 ) r xx & r xy (h/e 0.0  h =-1 B = 20 T -0.5 T ~ 30 mK -2 -1.0 -10 -5 0 5 10 V g (V)

  18. The circular conductivity law due to co-existence of both electrons and holes and their interactions • In the CN regime, electron density and hole density low. • Landau level filling factors for electrons and holes small • Without e-h interactions, 2D electrons and holes in high s xx =0 magnetic field induced insulating phase, and s xy = 0.

  19. R.J. Nicolas et al, Phys. Rev. Lett. 85 , 2364 (2000) • Breakup of perfect dissipationless edge states due to disorder and e-h interactions. • Breakup of stable orbits can give rise to chaotic motions. [G. Müller, G.S. Boebinger et al, Phys. Rev. Lett. 75 , 2875 (1995).]

  20. Outline • InAs/GaSb heterostructure • The experiment and results – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction – Giant supercurrent in a Ta-InAs/GaSb-Ta junction • Summary

  21. 8-band k.p calculations with QW widths (GaSb 5 nm; InAs 10 nm) K. Chang, unpublished Z. Liu et al., Acta Phys. Sin. 2012, 61, 217303

  22. Density n = 1.8x10 11 cm -2 Mobility m = 1.2x10 5 cm 2 /Vs E F = 18.7 meV l mfp = 0.8 m m V F = 5.4x10 5 m/s

  23. S-N-S junction Ta-InAs/GaSb-Ta junction Junction: W=10 m m L= 2 m m • InAs 2 nm Ta Ta AlSb 50 nm 240 nm 240 nm GaSb 5 nm InAs 10 nm AlSb 50 nm 200 bilayer Ta 150 R (  ) T c =1.55K I V 100 Ta 50 0 10 20 30 40 T (K)

  24. Ta V DC +dV I DC +dI Ta 250 T=0.5 K B=0 200 2 /h) 150 dI/dV (e 100 50 -40 -20 0 20 40 DCV on sample (mV) V DC (meV) Zero bias conductance peak + multiple equally spaced dips

  25. McMillan-Rowell Oscillations (MRO) V n = V 0 + n×hV F /4d N S N J. M. Rowell and W. L. McMillan, Phys. Rev. Lett. 16 , 453 (1966). C. Visanli et al, Nature Physics 8, 539 (2012). B. Wu et al, arXiv:1305.5140.

  26. McMillan-Rowell like Oscillations 250 250 T=0.5 K T=0.5 K B=0 B=0 200 200 30 2 /h) 2 /h) Vn (mV) 150 150 dI/dV (e dI/dV (e n=12 n=12 20 3 3 100 100 0.5 K 10 0.3 K 50 50 4 4 1 2 3 4 5 -40 -40 -20 -20 0 0 20 20 40 40 n DCV on sample (mV) DCV on sample (mV) V n = V 0 + n×hV F /4d N

  27. One serious issue with MRO explanation: From the slope of MRO plot, a Fermi velocity of V F = 1.3x10 7 m/s is obtained. This value is much larger than that (V F = 5.4x10 5 m/s) obtained fro SdH oscillations.

  28. Giant super-current in Ta- InAs/GaSb-Ta junction bilayer Ta I V Ta

  29. Giant super-current observed

  30. Large T c

  31. I ( m A)

  32. A couple of details: 1) Very large Jc, Jc = 350 nA/ m m >> ~15 nA/ m m reported by other groups. (considering L = 2 m m, x sc ~ 80nm (bulk Ta) and l mfl = 0.8 m m) 2) Large number of flux per lobe ~ 300 F 0 >>1. A large value of flux per lobe was also observed in S-GaAs- S junction by Rokhinson et al.

  33. Summary: (1) Well-developed integer quantum Hall effect states at Landau level fillings  =1, 2 in the hole regime and  =1, 2, 3… in the electron regime. (2) Chaotic quantum transport behavior at extremely high magnetic fields around the charge neutrality point. (3) Circular conductivity law in s xx versus s xy . (4) MRO in Ta-InAs/GaSb-Ta junction device (5) Giant supercurrent in Ta-InAs/GaSb-Ta junction

  34. Collaborators: Sandia: – John Klem – Sam Hawkins – Ken Lyo – Jin Kim – Mike Cich – Madhu Thalakulam – Wenlong Yu – Xiaoyan Shi Princeton: – Jian Li – Andrei Berniverg Georgia Tech: – Wenlong Yu – Zhigang Jiang

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend