global fits to radiative b s transitions
play

Global fits to radiative b s transitions S ebastien Descotes-Genon - PowerPoint PPT Presentation

Global fits to radiative b s transitions S ebastien Descotes-Genon Laboratoire de Physique Th eorique CNRS & Universit e Paris-Sud 11, 91405 Orsay, France Rencontres de Moriond - Electroweak session 16 March 2014 LPT Orsay S.


  1. Global fits to radiative b → s transitions S´ ebastien Descotes-Genon Laboratoire de Physique Th´ eorique CNRS & Universit´ e Paris-Sud 11, 91405 Orsay, France Rencontres de Moriond - Electroweak session 16 March 2014 LPT Orsay S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 1

  2. Effective approach to radiative decays b → s γ and b → s ℓ + ℓ − Flavour-Changing Neutral Currents enhanced sensitivity to New Physics effects analysed in model-independent approach effective Hamiltonian integrating out all heavy degrees of freedom 10 b → s γ ( ∗ ) : H SM � V ∗ ∆ F = 1 ∝ ts V tb C i Q i + . . . i = 1 Q 7 = e s σ µν ( 1 + γ 5 ) F µν b g 2 m b ¯ [real or soft photon] Q 9 = e 2 s γ µ ( 1 − γ 5 ) b ¯ g 2 ¯ ℓγ µ ℓ [ b → s µµ via Z /hard γ ] Q 10 = e 2 s γ µ ( 1 − γ 5 ) b ¯ g 2 ¯ ℓγ µ γ 5 ℓ [ b → s µµ via Z ] NP changes short-distance C i and/or add new long-distance ops Q ′ i Q 7 → Q 7 ′ ∝ ¯ Chirally flipped ( W → W R ) s σ µν ( 1 − γ 5 ) F µν b (Pseudo)scalar ( W → H + ) s ( 1 + γ 5 ) b ¯ Q 9 , Q 10 → Q S ∝ ¯ ℓℓ, Q P s σ µν ( 1 − γ 5 ) b ¯ Q 9 → Q T ∝ ¯ Tensor operators ( γ → T ) ℓσ µν ℓ S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 2

  3. Wilson Coefficients and processes Matching SM at high-energy scale µ 0 = m t and evolving down at µ ref = 4 . 8 GeV C SM = − 0 . 29 , C SM = 4 . 1 , C SM 10 = − 4 . 3 , 7 9 (formulae known up to NNLO + e.m. corrections) C i Observables SM values C eff B ( B → X s γ ) , A I ( B → K ∗ γ ) , S K ∗ γ , B → K ∗ ℓℓ − 0 . 29 7 B ( B → X s ℓℓ ) , B → K ( ∗ ) ℓℓ C 9 4 . 1 B ( B s → µ + µ − ) , B ( B → X s ℓℓ ) , B → K ( ∗ ) ℓℓ C 10 − 4 . 3 C ′ B ( B → X s γ ) , A I ( B → K ∗ γ ) , S K ∗ γ , B → K ( ∗ ) ℓℓ 0 7 C ′ B ( B → X s ℓℓ ) , B → K ( ∗ ) ℓℓ 0 9 C ′ B ( B s → µ + µ − ) , B → K ( ∗ ) ℓℓ 0 10 B → X s γ : strong constraints on C 7 , C 7 ′ [Misiak, Gambino, Steinhauser. . . ] B → X s ℓℓ : not accurate enough expt [Misiak, Bobeth, Gorbahn, Haisch, Huber, Lunghi. . . ] B s → µµ : recent th. and exp. progress [talks from C. Bobeth and M. Gorbahn] B → K ( ∗ ) ℓℓ : recent th. and exp. progress S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 3

  4. B → K ∗ ℓℓ : angular analysis θ l : angle of emission between K ⋆ 0 � K and µ − in di-lepton rest frame � � µ θ K ∗ : angle of emission between K ⋆ 0 � B 0 � K l and K − in di-meson rest frame. µ + φ : angle between the two planes � + q 2 : dilepton invariant mass square d 4 Γ � dq 2 d cos θ l d cos θ K ∗ d φ = f i ( θ K ∗ , φ, θ l ) × I i i with 12 angular coeffs I i , interferences between 8 transversity ampl. ⊥ , || , 0 , t polarisation of (real) K ∗ and (virtual) V ∗ = γ ∗ , Z ∗ L , R chirality of µ + µ − pair A ⊥ , L / R , A || , L / R , A 0 , L / R , A t + scalar A s depend on q 2 (lepton pair invariant mass) Wilson coefficients C 7 , C 9 , C 10 , C S , C P (and flipped chiralities) B → K ∗ form factors A 0 , 1 , 2 , V , T 1 , 2 , 3 from � K ∗ | Q i | B � S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 4

  5. Four different regions dB(B->K* μμ )/ds x 10 (GeV ) 2 7 γ pole Large recoil Charmonia Low recoil 2 s (GeV ) ℓ < q 2 < 1 GeV 2 ): γ almost real Very large K ∗ -recoil (4 m 2 ( C 7 / q 2 divergence and light resonances) Large K ∗ -recoil ( q 2 < 9 GeV 2 ): energetic K ∗ ( E K ∗ ≫ Λ QCD : form factors from light-cone sum rules LCSR) Charmonium region ( q 2 = m 2 ψ,ψ ′ ... between 9 and 14 GeV 2 ) Low K ∗ -recoil ( q 2 > 14 GeV 2 ): soft K ∗ ( E K ∗ ≃ Λ QCD : form factors lattice QCD) S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 5

  6. Hadronic quantities: B → K ∗ form factors 7 independent form factors A 0 , 1 , 2 , V ( O 9 , 10 ) and T 1 , 2 , 3 ( O 7 ) A 2 ( q 2 ) s γ µ ( 1 − γ 5 ) | B ( ǫ, p ) � = − i ǫ µ ( m B + m V ) A 1 ( q 2 ) + i ( p + k ) µ ( ǫ ∗ · q ) � K ∗ ( k ) | ¯ m B + m K ∗ 2 V ( q 2 ) + iq µ ( ǫ ∗ · q ) 2 m K ∗ A 0 ( q 2 ) + ǫ µνρσ ǫ ∗ ν p ρ k σ ˜ q 2 m B + m K ∗ � K ∗ ( k ) | ¯ s σ µν q ν ( 1 + γ 5 ) | B ( ǫ, p ) � = i ǫ µνρσ ǫ ∗ ν p ρ k σ 2 T 1 ( q 2 ) + ǫ ∗ µ ( m 2 B − m 2 V ) T 2 ( q 2 ) − ( p + k ) µ ( ǫ ∗ · q )˜ T 3 ( q 2 ) + q µ ( ǫ ∗ · q ) T 3 ( q 2 ) In the limits of low and large K ∗ recoil, separation of scales Λ and m B q 2 ∼ Λ QCD ≪ m B ) � Large-recoil limit ( [LEET/SCET, QCDF] two soft form factors ξ ⊥ ( q 2 ) and ξ || ( q 2 ) O ( α s ) corr. from hard gluons [computable], O (Λ / m B ) [nonpert] [Charles et al., Beneke and Feldmann] Low-recoil limit ( E K ∗ ∼ Λ QCD ≪ m B ) [HQET] three soft form factors f ⊥ ( q 2 ) , f || ( q 2 ) , f 0 ( q 2 ) O ( α s ) corr. from hard gluons [computable] and O (Λ / m B ) [nonpert] [Grinstein and Pirjol, Hiller, Bobeth, Van Dyk. . . ] S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 6

  7. Form-factor “independent” observables = Obs. where soft form factors cancel at LO 9 ( s 0 ) + 2 m b M B Zero of forward-back. asym. A FB ( s 0 ) = 0: C eff s 0 C eff 7 = 0 Transversity asymmetries [Kr¨ uger, Matias; Becirevic, Schneider] = | A ⊥ | 2 − | A || | 2 Re [ A L ∗ ⊥ A L || − A R ⊥ A R ∗ || ] P 2 = A re I 3 2 = I 6 s P 1 = A ( 2 ) T = | A ⊥ | 2 + | A || | 2 , = | A ⊥ | 2 + | A || | 2 T 2 I 2 s 8 I 2 s ⊥ || 1.0 1.0 SM SM 0.5 0.5 re � 2 2 P 1 � A T P 2 � A T 0.0 0.0 � 0.5 � 0.5 � 1.0 � 1.0 1 2 3 4 5 6 1 2 3 4 5 6 q 2 � GeV 2 � q 2 � GeV 2 � 6 form-factor independ. obs. at large recoil ( P 1 , P 2 , P 3 , P ′ 4 , P ′ 5 , P ′ 6 ) + 2 form-factor dependent obs. ( Γ , A FB , F L . . . ) [ A FB = − 3 / 2 P 2 ( 1 − F L ) ] exhausting information in (partially redundant) angular coeffs I i [Matias, Kr¨ uger, Mescia, SDG, Virto, Hiller, Bobeth, Dyck, Buras, Altmanshoffer, Straub. . . ] S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 7

  8. Sensitivity to form factors P i designed to have limited sensitivity to ffs S i CP-averaged version of I i ( A i for CP-asym) F L = I 1 c +¯ S 3 = I 3 +¯ 2 S 3 I 1 c I 3 P 1 = Γ + ¯ Γ + ¯ 1 − F L Γ Γ different sensivity to form factors inputs for given NP scenario (form factors from LCSR: green [Ball, Zwicky] vs gray [Khodjamirian et al.] ) S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 8

  9. Computation of amplitudes Large recoil: NLO QCD factorisation V , A i , T i = ξ || , ⊥ in A ⊥ , || , 0 (non-factor.) in FFs (factor) + factorisable O ( α s ) + nonpert O (Λ / m b ) A 0 , || , ⊥ = C i × ξ || , ⊥ + factorisable O ( α s ) + nonfactorisable O ( α s ) + nonpert O (Λ / m b ) either compute A with ξ || , ⊥ extracted from V , A i (check T i OK) or compute A from V , A i , T i + nonfactorisable corrections nonperturbative corrections O (Λ / m b ) ≃ 10 % Low recoil: OPE + HQET A 0 , || , ⊥ = C i × f 0 , || , ⊥ + O ( α s ) corrections + O ( 1 / m b ) corrections f 0 , || , ⊥ ∝ CL ( A 1 , A 2 ) , A 1 , V + O ( 1 / m b ) corrections HQET relations between V , A i and T i nonperturbative corrections smaller O ( C 7 Λ / m b , α s Λ / m b ) S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 9

  10. SM predictions and LHCb results (1) Present bins Large recoil: [0.1, 2], [2,4.3], [4.3,8.68] and [1,6] GeV 2 Low recoil: [14.18,16], [16,19] GeV 2 c ¯ c resonances : [ 10 . 09 , 12 . 89 ] [ 0 . 1 , 1 ] with light resonances, washed out by binning [Camalich, J¨ ager] q 2 > 6 GeV 2 may be affected by charm-loop effects [Khodjamirian et al.] Beauty 12 and EPS 13 : results from LHCb 1.0 1.0 0.8 0.5 0.6 � A FB � � F L � 0.0 0.4 � 0.5 0.2 0.0 � 1.0 0 5 10 15 20 0 5 10 15 20 q 2 � GeV 2 � q 2 � GeV 2 � [SDG, Matias, Virto] = ⇒ blue: SM unbinned, purple: SM binned, crosses: LHCb values S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 10

  11. SM predictions and LHCb results (2) 1.0 1.5 0.4 0.5 1.0 0.2 0.5 � P 1 � � P 2 � � � 0.0 0.0 � P 4 0.0 � 0.2 � 0.5 � 0.5 � 0.4 � 1.0 � 1.0 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 q 2 � GeV 2 � q 2 � GeV 2 � q 2 � GeV 2 � 1.0 1.0 0.6 0.5 0.4 0.5 0.2 0.0 � � � � � � � P 5 � P 6 � P 8 0.0 0.0 � 0.2 � 0.5 � 0.5 � 0.4 � 1.0 � 0.6 � 1.0 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 q 2 � GeV 2 � q 2 � GeV 2 � q 2 � GeV 2 � Meaning of the discrepancy in P 2 and P ′ 5 ? [SDG, Matias, Virto] P 2 same zero as A FB , related to C 9 / C 7 P 5 ′ → − 1 as q 2 grows due to A R ⊥ , || ≪ A L ⊥ , || for C SM ≃ − C SM 9 10 A negative shift in C 7 and C 9 can move them in the right direction S. Descotes-Genon (LPT-Orsay) Global fits to radiative b → s 16/03/14 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend