the ads cft s matrix
play

The AdS/CFT S-matrix Esperanza L opez sica Te Instituto de F - PowerPoint PPT Presentation

The AdS/CFT S-matrix Esperanza L opez sica Te Instituto de F orica UAM/CSIC, Madrid R. Hernandez, EL hep-th/0603204 N. Beisert, R.Hernandez, EL hep-th/0609044 The AdS/CFT S-matrix p. Outline Introduction The S-matrix,


  1. The AdS/CFT S-matrix Esperanza L´ opez ısica Te´ Instituto de F´ orica UAM/CSIC, Madrid R. Hernandez, EL hep-th/0603204 N. Beisert, R.Hernandez, EL hep-th/0609044 The AdS/CFT S-matrix – p.

  2. Outline • Introduction • The S-matrix, integrability and symmetries • Quantum corrections at strong coupling • A crossing symmetric phase • Matching with small coupling • Conclusions The AdS/CFT S-matrix – p.

  3. AdS/CFT Correspondence N = 4 SU ( N ) YM ⇔ Type IIB strings on AdS 5 × S 5 Maldacena 1 /N ⇔ g st λ = R 4 /α ′ 2 λ = g 2 Y M N ⇔ ⇔ gauge th. operators ( ∆ ) string spectrum ( E ) Suppression of string loops ⇔ large N limit • Strong/weak coupling duality: E = E ( 1 ∆ = ∆( λ ) λ small, λ ) λ large √ • String sigma model is very involved The AdS/CFT S-matrix – p.

  4. How to bridge from small to large λ ? • BPS quantities Supergravity approximation • AdS/CFT at large quantum numbers Polyakov Op. with a large R-charge ⇔ Strings on pp-waves Berenstein, Maldacena, Nastase Long operators: Tr( φ 1 φ 2 · · · φ J ) ⇔ Semiclassical strings ◦ Controlled quantum corrections: ∆ − ∆ 0 small ∆ 0 ◦ Operator mixing The AdS/CFT S-matrix – p.

  5. How to bridge from small to large λ ? • Integrability AdS 5 × S 5 classical Integrable structures in perturbative N =4 string is integrable Lipatov; Minahan, Zarembo Bena, Polchinski, Roiban Beisert, Staudacher Hyphothesis: Integrability holds for any λ The AdS/CFT S-matrix – p.

  6. N =4 Yang-Mills and spin chains Dilatation operator: D O = ∆ O At large N, enought with O single trace Equivalent problem: Spin chain dynamics O =Tr( XY Y XY · · · ) X = ↑ Y = ↓ D : spin chain integrable Hamiltonian • D XY, 1 − loop : Heisenberg ferro. spin chain • Long range chain: Interaction range ⇔ Loop order • Dynamical chain: XY Z → ψ 1 ψ 2 The AdS/CFT S-matrix – p.

  7. Integrability and asymptotic Bethe ansatz Integrability ⇔ Factorized scattering p q S(p,q) Central object: 2 → 2 scattering matrix | p � = P J 1 e ilp |↑ · · · ↑↓↑ · · · ↑� l = l Spectrum: periodicity conditions on wavefunctions e ip j J = � k � = j S ( p j , p k ) Asymptotic Bethe ansatz Staudacher • Infinite chain, asymptotic states → S-matrix • Periodicity conditions • Spectrum accurate to order λ J The AdS/CFT S-matrix – p.

  8. The AdS/CFT S-matrix Gauge th. Strings S 5 Tr X J →∞ = Vacuum J →∞ = · · · ↑↑ · · · ↑ · · · ( λ fixed) Excitations φ i , ∂ µ X, ψ k 8b + 8f BMN psu (2 , 2 | 4) Symm. algebra psu (2 | 2) 2 × R Residual symm. psu (2 | 2) 2 × R 3 Enlarged symm. ( introduce momentum | p � ) Beisert S N =4 = S 0 ˆ S su (2 | 2) ˆ S su (2 | 2) = ¯ S 0 ˆ S ′ − → S su (2 | 2) su (2 | 2) ˆ ¯ S su (2 | 2) : uniquely fixed flavour structure S 0 , S 0 : scalar factors The AdS/CFT S-matrix – p.

  9. The dressing phase S 0 ( p, q ; λ ) = e iθ ( p,q ; λ ) where Beisert, Klose ∞ ∞ √ � � � � q r ( p ) q s ( q ) − q r ( q ) q s ( p ) θ = λ c r,s ( λ ) r =2 s>r q r : tower of conserved charges ( q 1 ( p ) = p , q 2 ( p ) ∼ E − J ) • Strong coupling r,s + 1 c r,s ( λ ) = c (0) c (1) √ r,s + · · · λ c (0) 1 Classical strings → r,s = 2 π δ r +1 ,s Arutyunov, Frolov, Staudacher • Small coupling: θ = 0 up to three-loops The AdS/CFT S-matrix – p.

  10. Quantum corrections at strong λ � 1 √ J = J � √ √ E st = λ ǫ cl ( J ) + δE ( J ) + O , λ λ δE : sum over fluctuations around the classical solution δE = 1 � ( ω B,n − ω F,n ) 2 Bethe equations: e ip j J = � k � = j S ( p j , p k ) − → spectrum • E cl : thermodynamic limit of BE ( J, #excitations → ∞ ) • Two souces of contribution to δE ◦ Finite size corrections: 1 J → c (1) ◦ Quantum correction to the S-matrix: 1 λ ← √ r,s The AdS/CFT S-matrix – p. 1

  11. Circular strings 2-spin rigid circular strings on R t × S 3 or AdS 3 × S 1 Ji Frolov, Tseytlin The frequency sum can be divide in two pieces at large J 1 2 ( ω B,n − ω F,n ) → e 1 ( n ) , e 2 ( n/ J ) Beisert, Tseytlin; Schäfer-Nameki • Fluctuations with finite mode number n δE 1 = � e 1 ( n ) : finite size correction, O ( 1 J ) ( p = n J → 0 as J → ∞ , n fixed) √ • Fluctuations with finite z = n J = λ p : quantum correction, O ( 1 � δE 2 = J dz e 2 ( z ) λ ) √ The AdS/CFT S-matrix – p. 1

  12. Quantum corrections to the dressing phase r,s = ( − 1) r + s − 1 2( r − 1)( s − 1) c (1) ( r + s − 2)( s − r ) π Hernandez, EL Tests: • 2-spin circular strings On S 3 : checked up to 1 / J 101 !! δE 2 = − m 6 3 J 5 + m 8 3 J 7 − 49 m 10 120 J 9 + 2 m 12 5 J 11 − . . . On AdS 3 × S 1 : up to 1 / J 15 δE 2 = ( m − k ) 3 m 3 1 − 3 k 2 − 8 km + 75 k 4 − 455 k 3 m +679 k 2 m 2 − 153 km 3 +29 m 4 » − · 3 J 5 2 J 2 40 J 4 • 3-spin circular strings Freyhult, Kristjansen • Universality Gromov, Viera The AdS/CFT S-matrix – p. 1

  13. Crossing symmetry ¯ φ = In relativistic integrable QFT φ • S-matrix determined by symmetries up to a global phase • The global phase can be fixed by crossing symmetry AdS/CFT dispersion relation does not have relativistic inv. √ λ � 1 + 16 g 2 sin 2 ( 1 E ( p ) = ± 2 p ) , g = 4 π Beisert But still admits particle/hole interpretation Hyphothesis: Crossing symmetry holds for AdS 5 × S 5 strings Janik The AdS/CFT S-matrix – p. 1

  14. Implementation of crossing Janik x + x + + 1 x + − x − − 1 x − = i x − = e ip , g − → torus • Period ω 1 : p → p + 2 π • Crossing symmetry ( x ± → 1 /x ± ): half period ω 2 � 2 � x − x − 1 − 1 /x − 1 x − 1 − x + ≡ h 2 2 2 2 ( S 0 ) 12 ( S 0 ) ¯ 12 = 12 x + x + 1 − x + 1 − 1 /x + 1 x − 2 2 2 1 → ¯ Double crossing: 1 → ¯ ¯ 1=1 12 /h 12 ) 2 � = ( S 0 ) 12 : non-trivial monodromy ( S 0 ) ¯ 12 = ( h ¯ ¯ Define: θ = θ odd + θ even , S 0 = e iθ = log h 12 θ odd 12 + θ odd θ even + θ even , = log h 12 h ¯ ¯ ¯ 12 12 12 12 h ¯ 12 The AdS/CFT S-matrix – p. 1

  15. A crossing symmetric phase n θ ( n ) θ ( n ) � − � g 1 c ( n ) rs ( q r 1 q s 2 − q r 2 q s 1 ) θ 12 = 12 , 12 = r<s Γ[ 1 Γ[ 1 1) r + s − 1)( r − 1)( s − 1) B n 2 ( s + r + n − 3)] 2 ( s − r + n − 1)] rs = (( − c ( n ) 2 cos( 1 Γ[ 1 Γ[ 1 2 πn )Γ[ n − 1]Γ[ n +1] 2 ( s + r − n +1)] 2 ( s − r − n +3)] Beisert, Hernandez, EL • Even crossing θ even = � g 1 − 2 n θ (2 n ) � � c (0) rs = 2 δ r +1 ,s • Odd crossing c (1) rs = ( − 1) r + s − 1 2( r − 1)( s − 1) θ odd = θ (1) ( r + s − 2)( s − r ) π Odd Bernoulli numbers: B 1 = − 1 2 , B n> 1 = 0 The AdS/CFT S-matrix – p. 1

  16. Problems at small coupling ( c ( n ) • c rs ( g ) has a finite expansion in 1 /g rs =0 , n ≥ s − r +3) • At small coupling q r → g r − 1 q r Regular extrapolation to small g θ even = O ( g 2 ) , θ odd = O ( g 3 ) On the gauge theory side • Trivial phase up to 3-loops: θ = O ( g 6 ) • Analytical in λ ∼ g 2 Worsens the 3-loop discrepancy of θ (0) = O ( g 4 ) The AdS/CFT S-matrix – p. 1

  17. A homogeneuos solution Crossing determines the dressing phase up to θ hom + θ hom = 0 ¯ 12 12 Using c ( n ) 2 πn ) = − 2Γ[ n + 1] ζ ( n ) B n rs ∼ cos( 1 ( − 2 π ) n Γ[ 1 Γ[ 1 1) r + s )( r − 1)( s − 1) ζ ( n ) 2 ( s + r + n − 3)] 2 ( s − r + n − 1)] rs = (1 − ( − c ( n ) ( − 2 π ) n Γ[ n − 1] Γ[ 1 Γ[ 1 2 ( s + r − n +1)] 2 ( s − r − n +3)] θ hom = � n> 1 g − 2 n θ (2 n +1) c hom rs ( g ) does not have a finite expansion − → → adding θ hom will alter the small coupling behaviour − The AdS/CFT S-matrix – p. 1

  18. Connecting to small coupling n ≥ 0 c ( n ) rs g 1 − n c rs ( g ) = � 2 c rs ) − Analytical prolongation at small g ( c rs → g r + s Beisert, Eden, − n ≥ 1 c ( n ) g r + s + n − 1 c rs ( g ) = − � Staudacher rs − c ( n ) ∼ cos( 1 2 πn ) ζ (1+ n ) rs • c ( − n ) = 0 for n> 0 odd: expansion in g 2 rs c ( − 2) • First contribution at O ( g 6 ) : = 4 ζ (3) 23 Matches 4-loop gauge th. calculations! ◦ 4-gluon amplitude → Tr XD S X Bern, Dixon, Kosover, Smirnov ◦ Dilatation op. in SU(2) sector Beisert, Roiban The AdS/CFT S-matrix – p. 1

  19. Analytical structure of the phase Elementary ex. with finite p at strong coupling � 1 + 16 g 2 sin 2 ( 1 2 p ) ∼ g , ∆ ϕ ∼ p E = Classical string solutions: giant magnons Hofman, Maldacena • S cl 0 has branch cuts at p 1 = ± p 2 : condensate of double poles Beisert, Hernandez, Lopez • 2d: on-shell 2-particle exchange → double poles • Magnons can form stable boundstates Dorey S 0 has double poles at 2-magnon boundstate exchange Dorey, Hofman, Maldacena The AdS/CFT S-matrix – p. 1

  20. Twist-two operators: Tr XD S X ∆ = S + f ( g ) log S + O ( S 0 ) , S → ∞ � 73 f ( g ) = 8 g 2 − 8 3 π 2 g 4 + 88 630 π 6 + 4 ζ (3) 2 � g 8 + · · · 45 π 4 g 6 − 16 At strong coupling: folded string rotating in AdS 5 f ( g ) = 4 g − 3 log 2 + O ( 1 g ) π Integral equation for any g : f = 16 g 2 σ (0) Beisert, Eden, Staudacher � ∞ t � � dt ′ K (2 gt, 2 gt ′ ) σ ( t ′ ) K (2 gt, 0) − 4 g 2 σ ( t )= e − 1 0 Numerical and analytical check: smooth interpolation Bena, Benvenuti, Klebanov, Scardicchio Kotikov, Lipatov The AdS/CFT S-matrix – p. 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend