test of the sibyll 2 3 high energy hadronic interaction
play

Test of the SIBYLL 2.3 high-energy hadronic interaction model using - PowerPoint PPT Presentation

Test of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data Juan Carlos Arteaga-Velzquez* , D. Rivera for the KASCADE-Grande Collaboration Instituto de Fsica y Matemticas, Universidad Michoacana, Mxico


  1. Test of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data Juan Carlos Arteaga-Velázquez* , D. Rivera for the KASCADE-Grande Collaboration Instituto de Física y Matemáticas, Universidad Michoacana, México ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 1

  2. Test of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data Juan Carlos Arteaga-Velázquez* , D. Rivera for the KASCADE-Grande Collaboration Instituto de Física y Matemáticas, Universidad Michoacana, México Outline 1. Introduction 2. Motivation 3. The KASCADE-Grande detector 4. Data & Simulations 5. Analysis 6. Results 7. Summary ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 2

  3. Introduction P rimaries with E > 1 PeV are 30 - 20 km detected at Earth through air shower (EAS) observation C osmic rays are produced in HE astrophysical sources ( SNR’s, AGN’s, etc? ). E AS data is interpreted with hadronic models to study energy and composition ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 3

  4. Introduction Soft physics (low Q 2 ) is Hadronic interaction models: relevant for CR interactions 1. Phenomenological models inspired in QCD. 3. Calibrated with accelerator data. 4. Extrapolated to high energies (HE’s) and forward region ( p T ~ 0 ). T. Pierog,EPJ web of conferences 145, 18002 (2017) 0.1 % 0.02 % 99.88 % Model uncertainties produce uncertainties in predictions of EAS parameters ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 4

  5. Introduction Differences in EAS observables due to uncertainties in the models T. Pierog,EPJ web of conferences 145, 18002 (2017) ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 5

  6. Introduction Dependence of relative abundances and spectrum of CR’s with hadronic interaction models: KASCADE Coll., Astrop. Phys. 24 (2005) 1. Mass groups Mass groups KASCADE-Grande experiment M. Bertaina et al., Pos(ICRC2015) 359 Composition and energy scale a r e a f f e c t e d b y m o d e l uncertainties All-particle spectrum Imperative to check validity of hadronic models ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 6

  7. Introduction Employ muons for tests: - Penetrating particles/less atmospheric attenuation. Use CR observatories to constrain/test models: - Keep information from early stage of EAS development. - KASCADE-Grande E CR = 10 15 - 10 18 eV - Sensitive to hadronic processes. E th μ = 230 MeV, 490 MeV, 800 MeV, 2.4 GeV - Used in composition studies. - ICECUBE/ICETOP E CR = 10 15 - 10 17 eV E th μ = 0.2 GeV - EAS-MSU E CR = 10 17 - 10 18 eV E th μ = 10 GeV - Pierre Auger E CR > 10 18 eV E th μ = 1 GeV Proton @ 10 15 eV, Corsika simulation, F. Schmidt & J. Knapp ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 7

  8. Introduction Muon measurements: - Energy spectrum Use CR observatories to - µ - /µ + Charge ratio constrain/test models: - KASCADE-Grande - Multiplicity E CR = 10 15 - 10 18 eV E th μ = 230 MeV, 490 MeV, - Zenith angle dependence 800 MeV, 2.4 GeV - Lateral distributions - ICECUBE/ICETOP E CR = 10 15 - 10 17 eV - Production height E th μ = 0.2 GeV - EAS-MSU - Pseudorapidites E CR = 10 17 - 10 18 eV E th μ = 10 GeV - Pierre Auger E CR > 10 18 eV E th μ = 1 GeV Proton @ 10 15 eV, Corsika simulation, F. Schmidt & J. Knapp ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 8

  9. Motivation KASCADE-Grande EAS muon data Muon attenuation length ( Λ µ ): 1. Parameterizes dependence of number of μ ’s in EAS with the atmospheric depth: N μ = N μo e -(X/Λμ) 2. Correct data for attenuation in the atmosphere. 3. Affected by details of shower production: - π energy spectrum, cross section, p T distribution, - π ± / π 0 ratios, - Baryon/resonance production, - Multiplicity <N> - Inelasticity (y), etc. Muon E th > 230 MeV x Sec θ ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 9

  10. Motivation KASCADE-Grande EAS muon data Muon attenuation length ( Λ µ ): [ ] Total unc. — Stat. unc. ) Measured muon attenuation length (E CR 2 (g/cm KG data ( = 0 - 40 ) 1600 θ ° ° ~ 10 16 - 10 17 eV) is above MC predictions from: 1400 µ Λ Pre-LHC models (~ 2 σ ): 1200 - SIBYLL 2.1 - QGSJET-II-02 1000 800 Post-LHC models (~ 1.34 σ to 1.48 σ ): - EPOS-LHC - QGSJET-II-04 600 400 Better agreement with post-LHC models. 5 5.5 6 6.5 7 QGSJET II-2 QGSJET II-04 SIBYLL 2.1 EPOS LHC J.C. Arteaga et al., Astropar. Phys. 95 (2017) 25 Does SIBYLL 2.3* perform better? *F. Riehn et al., PoS(ICRC2015) 558 Less effective attenuation in exp. data ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 10

  11. The KASCADE-Grande detector J(E) = E - γ Data γ = -2.7 knee γ -3.0 -Spectrum 2 nd knee -Composition -Arrival direction γ ~ -3.3 γ = -2.6 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 11

  12. The KASCADE-Grande detector 1. What is the origin of J(E) = E - γ the features in the spectrum? 2. Where do they come from? Data γ = -2.7 knee 3. What is their nature? γ -3.0 -Spectrum 2 nd knee -Composition 4. How do they get -Arrival direction γ ~ -3.3 accelerated? 5. Are there nearby sources? γ = -2.6 6. Where is the galactic t o e x t r a g a l a c t i c transition? ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 12

  13. The KASCADE-Grande detector December 2003 - November 2012 1. Location: KIT-Campus North, Karlsruhe, Germany Karlsruhe, Germany 110 m a.s.l., 49 o N, 8 o E ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 13

  14. The KASCADE-Grande detector E= 1 PeV - 10 18 eV KASCADE (200 x 200 m 2 ) + Grande (0.5 km 2 ) Grande array KASCADE array 137 m 252 shielded/ unshielded scintillator detectors, muon tunnel, calorimeter. 37 plastic scintillator detectors W.D. Apel et al., NIMA 620 (2010) 490 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 14

  15. The KASCADE-Grande detector E= 1 PeV - 10 18 eV KASCADE (200 x 200 m 2 ) + Grande (0.5 km 2 ) Grande array KASCADE array • Ne (> 5 MeV) and e/ γ detector Scintillator detectors Nµ (> 230 MeV) liquid scintillator µ detector Pb/Fe shielding plastic scint. • Charged particles (> 3 MeV) H. Falcke et al., Nature 435 (2005) 313 W.D. Apel et al., NIMA 620 (2010) 490 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 15

  16. The KASCADE-Grande detector 2. KASCADE provides 1. Grande provides N µ : Number of muons N ch : Number of charged particles Fit to data: ρ ch (r) = N ch ⋅ f chNKG (s, r) Fit to data: ρ µ (r) = N µ ⋅ f µLagutin (r) Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 16

  17. The KASCADE-Grande detector Unfolding methods capable of reconstructing spectra of elemental groups: Exploit N e -N µ correlation Exploit N ch -N µ correlation QGSJET-II-02/Fluka KASCADE Coll., Astropart. Phys. 24 (2005) 1 KASCADE'Grande.Coll.,. Astropart..Phys..47.(2013) - Knee at E~10 15 eV due to a break in the - Iron knee around 80 PeV spectrum of light components Knee positions ∝ Z - Spectral features independent of the hadronic interaction models ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 17

  18. The KASCADE-Grande detector - Knee structure around 80 PeV in the heavy component QGSJET-II-02 2 nd knee Heavy 2 nd knee Light KASCADE Coll., Astrop. Phys. 36 (2012) 183 - Ankle-like feature at 120 PeV in the light component Galactic-extragalactic transition? ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 18

  19. Data & simulations Experimental data 2 744 950 selected events 1. Effective time: 1434 days 2. Área: 8 x 10 4 m 2 3. Exposure: 2.6 x 10 12 m 2 s sr 4. Cuts (reduction of EAS uncertainties): - Central area - θ < 40 o - Instrumental & reconstruction cuts - Optimized for E = [10 16 , 10 17 ] eV Efficiency: log 10 (E/GeV) = 7 ± 0.20 log 10 (N μ ) = 5 ± 0.20 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 19

  20. Data & simulations MC data (CORSIKA/Fluka) 1. HE hadronic interaction Ν μ data corrected for Model: SIBYLL 2.3 systematic errors ΔΝ μcorrected < 10% 2. Simulation: H, He, C, Si, Fe, mixed; γ = -3, -3.2, -2.8 θ < 42 o E = 10 14 - 3 x 10 18 eV 3. Systematics: - ΔΝ ch < 12% ΔΝ μ < 20% - Δθ < 0.6 o - σ core < 10 m ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 20

  21. Analysis Shower content at same Energy (E) is attenuated with atmospheric depth (X): Large X —> High zenith angles ( θ ) E E X 0 X 0 sec( θ ) θ N μ (0) ) µ MC data (Mixed) 5.45 SIBYLL 2.3 (N N μ ( θ ) 10 5.4 log 5.35 5.3 5.25 5.2 Ε ~10 16 eV 5.15 1 1.05 1.1 1.15 1.2 1.25 1.3 sec( ) θ ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend