tensor based algorithms for the model reduction of high
play

Tensor-based algorithms for the model reduction of high dimensional - PowerPoint PPT Presentation

Tensor-based algorithms for the model reduction of high dimensional problems: application to stochastic fluid problems M. Billaud Friess marie.billaud-friess@ec-nantes.fr Joint work with A. Nouy, O. Zahm CEMRACS Luminy, 2013 Introduction


  1. Tensor-based algorithms for the model reduction of high dimensional problems: application to stochastic fluid problems M. Billaud Friess marie.billaud-friess@ec-nantes.fr Joint work with A. Nouy, O. Zahm CEMRACS Luminy, 2013

  2. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions General context High dimensional problem in tensor spaces: Given b ∈ Y ′ , seek u ∈ X solution of L u = b . • L : X → Y ′ a linear and continuous isomorphism � s ||·|| X (resp. Y ) a tensor Hilbert space of dual X ′ (resp. Y ′ ). • X = a µ = 1 X µ • X (resp. Y ) is equipped with the norm || · || X (resp. || · || Y ) Typical problems: • Stochastic partial differential equations (SPDE) • Parametric partial differential equations • High dimensional algebraic systems in tensor format arising from discretization CEMRACS 2013 M. Billaud Friess (ECN) 2/ 37

  3. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Application: Stochastic PDEs arising from fluids Problem: Find u : ( x , ξ ) ∈ Ω × Ξ → u ( x , ξ ) in X = L 2 ( Ξ , dP ξ ; V ) solution of L ( u ( · , ξ ); ξ ) = b ( ξ ) , a.s. . with uncertainties represented by m ∈ N random variables on ( Ξ , B , P ξ ) : ξ ∈ R m , and V an Hilbert space of functions on Ω ⊂ R d . Considered examples: • Reaction-Advection-Diffusion problem: non-symetric problem L = − ν △ + c ( ξ ) · ∇ + a ( ξ ) with X = L 2 ( Ξ , dP ξ ; H 1 0 (Ω)) • Oseen problem: non-symetric saddle point problem � − ν ( ξ ) △ + a ( ξ ) · ∇ � ∇ with X = L 2 ( Ξ , dP ξ ; H 1 0 (Ω)) × L 2 ( Ξ , dP ξ ; L 2 (Ω)) L = ∇· 0 Difficulty: Curse of dimensionality ❀ Model reduction • Reduced basis approaches [Rozza] • Low rank tensor approximation (Proper Generalized Decomposition) [Nouy] CEMRACS 2013 M. Billaud Friess (ECN) 3/ 37

  4. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Low rank approximation ❶ Approximation in tensor subset for u ∈ X ≈ � u ∈ S X ⊂ X Rank- r canonical tensors: � � ||·|| X � r � s � s φ µ i ; φ µ R r ( X ) = i ∈ X µ with X = a X µ i = 1 µ = 1 µ = 1 Other: Tucker tensors, Tensor train tensors, Hierarchical Tucker tensors [Khoromskij] ❷ Best approximation in S X � u ∈ Π S X ( u ) = arg min v ∈ S X || v − u || u ∈ arg min � v ∈ S X || L v − b || ∗ ❀ ❸ Progressive constructions of approximations with Greedy approach [Temlyakov] Limitation of the classical approach: × Bad convergence rate for usual norm || · || ∗ (ex.: || · || 2 for non symmetric operator L ) × Weakly coercive problems CEMRACS 2013 M. Billaud Friess (ECN) 4/ 37

  5. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Low rank approximation ❶ Approximation in tensor subset for u ∈ X ≈ � u ∈ S X ⊂ X Rank- r canonical tensors: � � � r with X = L 2 ( Ξ , dP ξ ) ⊗ V = S ⊗ V R r ( X ) = φ i ⊗ ψ i ; φ i ∈ V , ψ i ∈ S i = 1 ❀ Deterministic/Stochastic separation s = 2 Other: Tucker tensors, Tensor train tensors, Hierarchical Tucker tensors [Khoromskij] ❷ Best approximation in S X � u ∈ Π S X ( u ) = arg min v ∈ S X || v − u || u ∈ arg min � v ∈ S X || L v − b || ∗ ❀ ❸ Progressive constructions of approximations with Greedy approach [Temlyakov] Limitation of the classical approach: × Bad convergence rate for usual norm || · || ∗ (ex.: || · || 2 for non symmetric operator L ) × Weakly coercive problems CEMRACS 2013 M. Billaud Friess (ECN) 4/ 37

  6. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Fig. Reaction-diffusion-advection problem : comparison of convergence error for || · || ∗ = || · || 2 for a R 20 approximation 10 0 Reference Approximation 10 − 1 u || 2 / || u || 2 10 − 2 || u − � 10 − 3 10 − 4 10 − 5 0 2 4 6 8 10 12 14 16 18 20 r CEMRACS 2013 M. Billaud Friess (ECN) 5/ 37

  7. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Main goal of the talk Goal: Present an approximation strategy to solve high dimensional PDEs (ex.: stochastic) in tensor subsets relying on best approximation problem formulated using ideal norms. 1 Ideal algorithm (IA) 2 Perturbed ideal algorithm (PA) 3 Ad-Re-Di problem 4 Oseen problem 5 Conclusions CEMRACS 2013 M. Billaud Friess (ECN) 6/ 37

  8. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Outline 1 Ideal algorithm (IA) 2 Perturbed ideal algorithm (PA) 3 Ad-Re-Di problem 4 Oseen problem 5 Conclusions CEMRACS 2013 M. Billaud Friess (ECN) 7/ 37

  9. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Ideal norm Problem: Given b ∈ Y ′ find the solution u of L u = b • L : X → Y ′ linear operator of adjoint L ∗ : Y → X ′ , b ∈ Y ′ • Riesz operators R X : X → X ′ (resp. R Y : Y → Y ′ ) ∀ u , w ∈ X � u , w � X = � u , R X w � X , X ′ = � R X u , w � X ′ , X = � R X u , R X u � X ′ • L is continuous � Lv , w � Y ′ , Y � v � X � w � Y = β > 0 . sup sup v ∈ X w ∈ Y • L is weakly coercive � Lv , w � Y ′ , Y � v � X � w � Y = α > 0 . v ∈ X sup inf w ∈ Y • We have the stability condition for L α || Lu || Y ′ ≤ || u || X ≤ β || Lu || Y ′ ➥ Under these assumptions L is an isomorphism [Ern] . CEMRACS 2013 M. Billaud Friess (ECN) 8/ 37

  10. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions How to choose the norms || · || X and || · || Y ′ ? [Cohen,Dahmen] || · || X = || L · || Y ′ ⇔ || · || X ′ = || L ∗ · || Y • This choice leads to a problem ideally conditioned i.e. α = β = 1 . • Possibility to choose a priori and arbitrary || · || X ❀ "Goal oriented approximations" Interpretation: Such a choice implies ∀ v , w ∈ X � v , w � X = � Lv , Lw � Y ′ = � Lv , R − 1 Y Lw � Y ′ , Y = � v , R − 1 X L ∗ R − 1 Y Lw � X X L ∗ ⇔ R X = L ∗ R − 1 ⇒ I X = R − 1 X L ∗ R − 1 Y L ⇔ R Y = LR − 1 Y L Example: algebraic system • L ∈ R n × n , u , b ∈ R n • X = Y = R n • R X = I , R Y = LL ∗ • || u || Y = || L ∗ u || 2 = || L ∗ u || X CEMRACS 2013 M. Billaud Friess (ECN) 9/ 37

  11. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Best approximation problem ❶ Best approximation problem u ≈ � u in S X ⊂ X u − b || Y ′ = min � u ∈ Π S X ( u ) = arg min v ∈ S X || v − u || X ⇔ || L � v ∈ S X || L v − b || Y ′ ❷ Equivalent problem: v ∈ S X || L v − b || Y ′ min • Non computable norm || · || Y ′ ❸ Exact gradient type algorithm We seek { u k , y k } k ≥ 0 ⊂ S X × Y given u 0 h = 0 s.t. � Y ( L u k − b )) , R − 1 y k = Π S X ( u k − R − 1 u k + 1 X L ∗ y k ) . ∈ • This ideal gradient type algorithm converges in one iteration. • R − 1 Y ( L v − b ) not affordable in practice ! • How to compute practically Π S X ? CEMRACS 2013 M. Billaud Friess (ECN) 10/ 37

  12. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Best approximation problem ❶ Best approximation problem u ≈ � u in S X ⊂ X u − b || Y ′ = min � u ∈ Π S X ( u ) = arg min v ∈ S X || v − u || X ⇔ || L � v ∈ S X || L v − b || Y ′ ❷ Equivalent problem: v ∈ S X || R − 1 Y ( L v − b ) || Y min • Non computable norm || · || Y ′ ❸ Exact gradient type algorithm We seek { u k , y k } k ≥ 0 ⊂ S X × Y given u 0 h = 0 s.t. � Y ( L u k − b )) , R − 1 y k = Π S X ( u k − R − 1 u k + 1 X L ∗ y k ) . ∈ • This ideal gradient type algorithm converges in one iteration. • R − 1 Y ( L v − b ) not affordable in practice ! • How to compute practically Π S X ? CEMRACS 2013 M. Billaud Friess (ECN) 10/ 37

  13. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions Outline 1 Ideal algorithm (IA) 2 Perturbed ideal algorithm (PA) 3 Ad-Re-Di problem 4 Oseen problem 5 Conclusions CEMRACS 2013 M. Billaud Friess (ECN) 11/ 37

  14. Introduction Ideal algorithm (IA) Perturbed ideal algorithm (PA) Ad-Re-Di problem Oseen problem Conclusions First step To compute: Find y k ∈ Y s.t. y k = R − 1 Y ( L u k − b ) • Λ δ : Y → Y is a non linear mapping s.t ∀ y ∈ { L ( S X − b ); v ∈ S X } we have || Λ δ ( y ) − y || Y ′ ≤ δ || y || Y ′ , δ ∈ ( 0 , 1 ) Y L ( u k − b ) "with" a precision δ • y k is an approximation of R − 1 How ? • Preconditionned iterative solver [Powell & al.] • Greedy construction in a fixed small low-rank subset (ex.: R 1 ) [Temlyakov] CEMRACS 2013 M. Billaud Friess (ECN) 12/ 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend