a new lower boun o th hilber number for quarti system
play

A New Lower Boun o th Hilber Number for Quarti System 1,2 - PowerPoint PPT Presentation

JNCF 2019, CIRM, Marseill A New Lower Boun o th Hilber Number for Quarti System 1,2 1 2


  1. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  2. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  3. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  4. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  5. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  6. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  7. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  8. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  9. + Infinitesimal Hilbert’s 16th Problem 1 . 4 1 . 2 H ( x , y ) = ( x 2 − 0 . 9 ) 2 + ( y 2 − 1 . 1 ) 2 y 1 ⎧ x = 4 y ( y 2 − 1 . 1 ) 0 . 8 ⎪ ˙ ⎪ ⎨ y = 4 x ( x 2 − 0 . 9 ) − 0 . 4 y + 0 . 46 x 2 y ⎪ ˙ ⎪ ⎩ 0 . 6 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  10. + Infinitesimal Hilbert’s 16th Problem Infinitesimal Hilbert’s 16th problem For a given integer n , what is the maximal 1 . 4 number Z( n ) of limit cycles a perturbed Hamiltonian vector field of the form: 1 . 2 ⎧ ⎪ x = − ∂ y H ( x , y ) + ε f ( x , y ) ˙ ⎪ ⎨ y ⎪ ˙ y = ∂ x H ( x , y ) + ε g ( x , y ) 1 ⎪ ⎩ can have when ε → 0, with: 0 . 8 H ( x , y ) a polynomial potential function of degree n + 1 0 . 6 f , g polynomial perturbations of degree n 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x T. Johnson, A quartic system with twenty-six limit cycles, Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  11. + Infinitesimal Hilbert’s 16th Problem Infinitesimal Hilbert’s 16th problem For a given integer n , what is the maximal 1 . 4 number Z ( n ) of limit cycles a perturbed Hamiltonian vector field of the form: 1 . 2 ⎧ ⎪ x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎪ ˙ ⎨ ⎪ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ y ⎩ ˙ 1 can have when ε → 0, with: 0 . 8 H ( x , y ) a polynomial potential function of degree n + 1 0 . 6 f , g polynomial perturbations of degree n 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 x Z ( n ) < ∞ for all n T. Johnson, A quartic system with twenty-six limit cycles, Pessimistic upper bounds Experimental Mathematics , 2011 A New Lower Bound on H(4) 2/17

  12. + A Fundamental Tool: the Poincaré-Pontryagin Theorem 1 . 2 1 . 1 y h 1 0 . 9 0 . 9 1 1 . 1 1 . 2 1 . 3 x x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ ⎨ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ ˙ ⎪ ⎩ A New Lower Bound on H(4) 3/17

  13. + A Fundamental Tool: the Poincaré-Pontryagin Theorem 1 . 2 Poincaré first return map P ( h ) 1 . 1 y P ( h ) h 1 0 . 9 0 . 9 1 1 . 1 1 . 2 1 . 3 x x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ ⎨ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ ˙ ⎪ ⎩ A New Lower Bound on H(4) 3/17

  14. + A Fundamental Tool: the Poincaré-Pontryagin Theorem 1 . 2 Poincaré first return map P ( h ) 1 . 1 y P 3 ( h ) P 2 ( h ) P ( h ) h 1 0 . 9 0 . 9 1 1 . 1 1 . 2 1 . 3 x x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ ⎨ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ ˙ ⎪ ⎩ A New Lower Bound on H(4) 3/17

  15. + A Fundamental Tool: the Poincaré-Pontryagin Theorem 1 . 2 Poincaré first return map P ( h ) 1 . 1 Displacement d ( h ) = P ( h ) − h d ( h ) y P 3 ( h ) P 2 ( h ) P ( h ) h 1 0 . 9 0 . 9 1 1 . 1 1 . 2 1 . 3 x x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ ⎨ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ ˙ ⎪ ⎩ A New Lower Bound on H(4) 3/17

  16. + A Fundamental Tool: the Poincaré-Pontryagin Theorem 1 . 2 Poincaré first return map P ( h ) 1 . 1 Displacement d ( h ) = P ( h ) − h d ( h ) y Limit cycle ⇔ isolated zero of d P 3 ( h ) P 2 ( h ) P ( h ) h 1 0 . 9 0 . 9 1 1 . 1 1 . 2 1 . 3 x x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ ⎨ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ ˙ ⎪ ⎩ A New Lower Bound on H(4) 3/17

  17. + A Fundamental Tool: the Poincaré-Pontryagin Theorem 1 . 2 Poincaré first return map P ( h ) 1 . 1 Displacement d ( h ) = P ( h ) − h d ( h ) y Limit cycle ⇔ isolated zero of d P 3 ( h ) P 2 ( h ) P ( h ) h Abelian integral I ( h ) : 1 ∮ H − 1 ( h ) f ( x , y ) d y − g ( x , y ) d x 0 . 9 0 . 9 1 1 . 1 1 . 2 1 . 3 x x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ ⎨ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ ˙ ⎪ ⎩ A New Lower Bound on H(4) 3/17

  18. + A Fundamental Tool: the Poincaré-Pontryagin Theorem 1 . 2 Poincaré first return map P ( h ) 1 . 1 Displacement d ( h ) = P ( h ) − h d ( h ) y Limit cycle ⇔ isolated zero of d P 3 ( h ) P 2 ( h ) P ( h ) h Abelian integral I ( h ) : 1 ∮ H − 1 ( h ) f ( x , y ) d y − g ( x , y ) d x 0 . 9 0 . 9 1 1 . 1 1 . 2 1 . 3 x Poincaré-Pontryagin theorem The Abelian integral I ( h ) approximates the x = − ∂ y H ( x , y ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ displacement function d ( h ) for small ε : ⎨ y = ∂ x H ( x , y ) + ε g ( x , y ) ⎪ ˙ ⎪ d ( h ) = ε ( I ( h ) + O ( ε )) when ε → 0 ⎩ A New Lower Bound on H(4) 3/17

  19. + A Pseudo-Hamiltonian Quartic System Hamiltonian system: x = − 4 y ( y 2 − 1 . 1 ) ⎧ ⎪ ˙ ⎪ y = 4 x ( x 2 − 0 . 9 ) ⎨ ⎪ ˙ ⎪ ⎩ 1 y 0 − 1 − 1 0 1 x A New Lower Bound on H(4) 4/17

  20. + A Pseudo-Hamiltonian Quartic System pseudo- Hamiltonian system: x = − 4 y y ( y 2 − 1 . 1 ) ⎧ ⎪ ˙ ⎪ y = 4 y x ( x 2 − 0 . 9 ) ⎨ ⎪ ˙ ⎪ ⎩ 1 y 0 − 1 − 1 0 1 x A New Lower Bound on H(4) 4/17

  21. + A Pseudo-Hamiltonian Quartic System pseudo- Hamiltonian system: x = − 4 y y ( y 2 − 1 . 1 ) ⎧ ⎪ ˙ ⎪ y = 4 y x ( x 2 − 0 . 9 ) ⎨ ⎪ ˙ ⎪ ⎩ • • 1 same geometric orbits after rescaling y 0 • − 1 • • − 1 0 1 x A New Lower Bound on H(4) 4/17

  22. + A Pseudo-Hamiltonian Quartic System pseudo- Hamiltonian system: x = − 4 y y ( y 2 − 1 . 1 ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ y = 4 y x ( x 2 − 0 . 9 ) + ε g ( x , y ) ⎨ ⎪ ˙ ⎪ ⎩ • • 1 same geometric orbits after rescaling ≃ perturbations without rescaling: f ( x , y ) , g ( x , y ) ⟨ x i y j , i ⩾ 0 , j ⩾ − 1 , i + j ⩽ 3 ⟩ y 0 • ∈ y y − 1 • • − 1 0 1 x A New Lower Bound on H(4) 4/17

  23. + A Pseudo-Hamiltonian Quartic System pseudo- Hamiltonian system: x = − 4 y y ( y 2 − 1 . 1 ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ y = 4 y x ( x 2 − 0 . 9 ) + ε g ( x , y ) ⎨ ⎪ ˙ ⎪ ⎩ • • 1 same geometric orbits after rescaling ≃ perturbations without rescaling: f ( x , y ) , g ( x , y ) ⟨ x i y j , i ⩾ 0 , j ⩾ − 1 , i + j ⩽ 3 ⟩ y 0 • ∈ y y Generalized Poincaré-Pontryagin theorem The generalized Abelian integral: − 1 • • f ( x , y ) d y − g ( x , y ) d x I ( h ) = ∮ H − 1 ( h ) y − 1 0 1 x approximates the displacement function d ( h ) for small ε : d ( h ) = ε ( I ( h ) + O ( ε )) when ε → 0 A New Lower Bound on H(4) 4/17

  24. + A Pseudo-Hamiltonian Quartic System pseudo- Hamiltonian system: x = − 4 y y ( y 2 − 1 . 1 ) + ε f ( x , y ) ⎧ ⎪ ˙ ⎪ y = 4 y x ( x 2 − 0 . 9 ) + ε g ( x , y ) ⎨ ⎪ ˙ ⎪ ⎩ 1 same geometric orbits after rescaling ≃ perturbations without rescaling: f ( x , y ) , g ( x , y ) ⟨ x i y j , i ⩾ 0 , j ⩾ − 1 , i + j ⩽ 3 ⟩ 4 × ? + 2 × ? = ? y 0 ∈ y y Generalized Poincaré-Pontryagin theorem − 1 The generalized Abelian integral: f ( x , y ) d y − g ( x , y ) d x I ( h ) = ∮ H − 1 ( h ) y − 1 0 1 x ⇒ The finiteness of Z ( 4 ) does not apply, approximates the displacement function but we still have some tools of the d ( h ) for small ε : Hamiltonian case! d ( h ) = ε ( I ( h ) + O ( ε )) when ε → 0 A New Lower Bound on H(4) 4/17

  25. + Choice of Perturbations x 2 f ( x , y ) = 1 x y xy y 2 x 3 x 2 y xy 2 y 3 x 4 x 3 y x 2 y 2 xy 3 y 4 x 2 g ( x , y ) = 1 x y xy y 2 x 3 x 2 y xy 2 y 3 x 4 x 3 y x 2 y 2 xy 3 y 4 A New Lower Bound on H(4) 5/17

  26. + Choice of Perturbations x 2 f ( x , y ) = 1 x y xy y 2 x 3 x 2 y xy 2 y 3 x 4 x 3 y x 2 y 2 xy 3 y 4 x 2 g ( x , y ) = 1 x y xy y 2 x 3 x 2 y xy 2 y 3 x 3 y xy 3 x 4 x 2 y 2 y 4 symmetry requirements f ( x , y ) g ( x , y ) linear relations from Green’s formula: ∂ x ∝ ∂ y y y α 00 + α 20 x 2 + α 22 x 2 y 2 + α 40 x 4 + α 04 y 4 I( h ) = ∮ H − 1 ( h ) d x y A New Lower Bound on H(4) 5/17

  27. + Numerically Optimizing the Number of Zeros ▸ Find coefficients of I( h ) = α 00 I 00 ( h ) + α 20 I 20 ( h ) + α 22 I 22 ( h ) + α 40 I 40 ( h ) + α 04 I 04 ( h ) . 4 3 2 1 0 − 1 − 2 − 3 x 2 y 2 − 4 y 4 1 x 2 − 5 x 4 − 6 − 0 . 5 − 0 . 45 − 0 . 4 − 0 . 35 − 0 . 3 − 0 . 25 h A New Lower Bound on H(4) 6/17

  28. + Numerically Optimizing the Number of Zeros = -0.78622148667854837664 α 00 = 0.87723523612653436051 α 20 = 1 α 22 = 0.23742713894293038223 α 40 = -0.21823846173078863753 α 04 2 ( × 10 − 4 ) 1 0 − 1 h − 2 − 0 . 5 − 0 . 45 − 0 . 4 − 0 . 35 − 0 . 3 − 0 . 25 A New Lower Bound on H(4) 6/17

  29. + Numerically Optimizing the Number of Zeros = -0.78622148667854837664 α 00 = 0.87723523612653436051 α 20 = 1 α 22 = 0.23742713894293038223 α 40 = -0.21823846173078863753 α 04 2 ( × 10 − 4 ) 1 0 − 1 h − 2 − 0 . 5 − 0 . 45 − 0 . 4 − 0 . 35 − 0 . 3 − 0 . 25 1 ( × 10 − 7 ) 0 . 5 0 − 0 . 5 h − 1 -0.315 -0.310 -0.305 A New Lower Bound on H(4) 6/17

  30. + Numerically Optimizing the Number of Zeros = -0.78622148667854837664 α 00 = 0.87723523612653436051 α 20 = 1 α 22 = 0.23742713894293038223 α 40 = -0.21823846173078863753 α 04 2 ( × 10 − 4 ) 1 0 − 1 h − 2 − 0 . 5 − 0 . 45 − 0 . 4 − 0 . 35 − 0 . 3 − 0 . 25 1 ( × 10 − 7 ) 0 . 5 0 − 0 . 5 h − 1 -0.315 -0.310 -0.305 4 × 5 + 2 × 2 = 24 A New Lower Bound on H(4) 6/17

  31. Outline 1 A quartic example for Hilbert 16th problem 2 Computing Abelian integrals with rigorous polynomial approximations 3 Wronskian and extended Chebyshev systems 4 Conclusion A New Lower Bound on H(4)

  32. + Computing Abelian Integrals √ 0 < r ( = h ) < 0 . 9 2 y 2 1 0 0 1 2 x 2 1 y 0 − 1 − 1 0 1 x A New Lower Bound on H(4) 7/17

  33. + Computing Abelian Integrals √ 0 < r ( = h ) < 0 . 9 2 x min = 0 . 9 − x max = 0 . 9 + √ r √ r 2 2 y 2 1 x min = 1 . 1 − √ r x max = 1 . 1 + √ r 2 2 0 0 1 2 x 2 1 y 0 − 1 − 1 0 1 x A New Lower Bound on H(4) 7/17

  34. + Computing Abelian Integrals √ 0 < r ( = h ) < 0 . 9 2 x min = 0 . 9 − x max = 0 . 9 + √ r √ r 2 2 y 2 1 x min = 1 . 1 − √ r x max = 1 . 1 + √ r 2 2 √ √ r 2 − ( x 2 − 0 . 9 ) 2 0 y up ( x ) = 1 . 1 + 0 1 2 √ x 2 √ r 2 − ( x 2 − 0 . 9 ) 2 y down ( x ) = 1 . 1 − √ √ r 2 − ( y 2 − 1 . 1 ) 2 x left ( y ) = 0 . 9 − √ √ 1 r 2 − ( y 2 − 1 . 1 ) 2 x right ( y ) = 0 . 9 + y 0 − 1 − 1 0 1 x A New Lower Bound on H(4) 7/17

  35. + Computing Abelian Integrals √ 0 < r ( = h ) < 0 . 9 2 x min = 0 . 9 − x max = 0 . 9 + √ r √ r 2 2 y 2 1 x min = 1 . 1 − √ r x max = 1 . 1 + √ r 2 2 √ √ r 2 − ( x 2 − 0 . 9 ) 2 0 y up ( x ) = 1 . 1 + 0 1 2 √ x 2 √ r 2 − ( x 2 − 0 . 9 ) 2 y down ( x ) = 1 . 1 − √ √ r 2 − ( y 2 − 1 . 1 ) 2 x left ( y ) = 0 . 9 − √ √ 1 r 2 − ( y 2 − 1 . 1 ) 2 x right ( y ) = 0 . 9 + y 0 g ( x , y ) ( g ( x , y up ( x )) − g ( x , y down ( x )) I( h ) = ∮ H − 1 ( h ) d x = ∫ ) d x max − 1 y up ( x ) y down ( x ) y x min y 2 − 1 . 1 ( g ( x left ( y ) , y ) + g ( x right ( y ) , y ) − 1 0 1 +∫ ) √ y max r 2 − ( y 2 − 1 . 1 ) 2 d y . x left ( y ) x right ( y ) x y min A New Lower Bound on H(4) 7/17

  36. + Computing Abelian Integrals √ 0 . 9 < r ( = h ) < 1 . 1 2 y 2 1 0 0 1 2 x 2 1 y 0 − 1 − 1 0 1 x A New Lower Bound on H(4) 7/17

  37. + Computing Abelian Integrals √ 0 . 9 < r ( = h ) < 1 . 1 2 x min = 0 . 9 − x max = 0 . 9 + √ r √ r 2 2 y 2 1 x min = 1 . 1 − √ r x max = 1 . 1 + √ r 2 2 √ √ r 2 − ( x 2 − 0 . 9 ) 2 0 y up ( x ) = 1 . 1 + 0 1 2 √ x 2 √ r 2 − ( x 2 − 0 . 9 ) 2 y down ( x ) = 1 . 1 − √ √ r 2 − ( y 2 − 1 . 1 ) 2 x left ( y ) = 0 . 9 − √ √ 1 r 2 − ( y 2 − 1 . 1 ) 2 x right ( y ) = 0 . 9 + y 0 g ( x , y ) ( g ( x , y up ( x )) − g ( x , y down ( x )) I( h ) = ∮ H − 1 ( h ) d x = ∫ ) d x max − 1 y up ( x ) y down ( x ) y − x max g ( x right ( y ) , y )( y 2 − 1 . 1 ) − 1 0 1 + 2 ∫ √ y max r 2 − ( y 2 − 1 . 1 ) 2 d y . x x right ( y ) y min A New Lower Bound on H(4) 7/17

  38. + Rigorous Polynomial Approximations Definition A pair ( P , ε ) ∈ R [ X ] × R + is a rigorous polynomial approximation (RPA) of f for a given norm ∥ ⋅ ∥ if ∥ f − P ∥ ⩽ ε . � 0 × K − + H F G A New Lower Bound on H(4) 8/17

  39. + Rigorous Polynomial Approximations Definition A pair ( P , ε ) ∈ R [ X ] × R + is a rigorous polynomial approximation (RPA) of f for a given norm ∥ ⋅ ∥ if ∥ f − P ∥ ⩽ ε . Example: sup-norm over [ − 1 , 1 ] : f ∈ ( P , ε ) ⇔ ∣ f ( t ) − P ( t )∣ ⩽ ε ∀ t ∈ [ − 1 , 1 ] � 0 × K − + H F G A New Lower Bound on H(4) 8/17

  40. + Rigorous Polynomial Approximations Definition A pair ( P , ε ) ∈ R [ X ] × R + is a rigorous polynomial approximation (RPA) of f for a given norm ∥ ⋅ ∥ if ∥ f − P ∥ ⩽ ε . Example: sup-norm over [ − 1 , 1 ] : Example: r ( t ) = f ( t ) + g ( t ) f ∈ ( P , ε ) ⇔ ∣ f ( t ) − P ( t )∣ ⩽ ε ∀ t ∈ [ − 1 , 1 ] � 0 Some elementary operations: × ( P , ε ) + ( Q , η ) ∶ = ( P + Q , ε + η ) , K − + H F G A New Lower Bound on H(4) 8/17

  41. + Rigorous Polynomial Approximations Definition A pair ( P , ε ) ∈ R [ X ] × R + is a rigorous polynomial approximation (RPA) of f for a given norm ∥ ⋅ ∥ if ∥ f − P ∥ ⩽ ε . Example: sup-norm over [ − 1 , 1 ] : Example: r ( t ) = f ( t ) + g ( t ) − h ( t ) f ∈ ( P , ε ) ⇔ ∣ f ( t ) − P ( t )∣ ⩽ ε ∀ t ∈ [ − 1 , 1 ] � 0 Some elementary operations: × ( P , ε ) + ( Q , η ) ∶ = ( P + Q , ε + η ) , ( P , ε ) − ( Q , η ) ∶ = ( P − Q , ε + η ) , K − + H F G A New Lower Bound on H(4) 8/17

  42. + Rigorous Polynomial Approximations Definition A pair ( P , ε ) ∈ R [ X ] × R + is a rigorous polynomial approximation (RPA) of f for a given norm ∥ ⋅ ∥ if ∥ f − P ∥ ⩽ ε . Example: sup-norm over [ − 1 , 1 ] : Example: r ( t ) = k ( t )( f ( t ) + g ( t ) − h ( t )) f ∈ ( P , ε ) ⇔ ∣ f ( t ) − P ( t )∣ ⩽ ε ∀ t ∈ [ − 1 , 1 ] � 0 Some elementary operations: × ( P , ε ) + ( Q , η ) ∶ = ( P + Q , ε + η ) , ( P , ε ) − ( Q , η ) ∶ = ( P − Q , ε + η ) , K − ( P , ε ) ⋅ ( Q , η ) ∶ = ( PQ , ∥ Q ∥ η + ∥ P ∥ ε + ηε ) + H F G A New Lower Bound on H(4) 8/17

  43. + Rigorous Polynomial Approximations Definition A pair ( P , ε ) ∈ R [ X ] × R + is a rigorous polynomial approximation (RPA) of f for a given norm ∥ ⋅ ∥ if ∥ f − P ∥ ⩽ ε . Example: sup-norm over [ − 1 , 1 ] : Example: r ( t ) = ∫ 0 k ( s )( f ( s ) + g ( s ) − h ( s )) d s t f ∈ ( P , ε ) ⇔ ∣ f ( t ) − P ( t )∣ ⩽ ε ∀ t ∈ [ − 1 , 1 ] � 0 Some elementary operations: × ( P , ε ) + ( Q , η ) ∶ = ( P + Q , ε + η ) , ( P , ε ) − ( Q , η ) ∶ = ( P − Q , ε + η ) , K − ( P , ε ) ⋅ ( Q , η ) ∶ = ( PQ , ∥ Q ∥ η + ∥ P ∥ ε + ηε ) ∫ 0 ( P , ε ) ∶ = ( ∫ 0 P ( s ) d s , ε ) t + H F G A New Lower Bound on H(4) 8/17

  44. + Rigorous Polynomial Approximations Definition A pair ( P , ε ) ∈ R [ X ] × R + is a rigorous polynomial approximation (RPA) of f for a given norm ∥ ⋅ ∥ if ∥ f − P ∥ ⩽ ε . Example: sup-norm over [ − 1 , 1 ] : Example: r ( t ) = ∫ 0 k ( s )( f ( s ) + g ( s ) − h ( s )) d s t f ∈ ( P , ε ) ⇔ ∣ f ( t ) − P ( t )∣ ⩽ ε ∀ t ∈ [ − 1 , 1 ] √ ? � ÷ ? 0 Some elementary operations: × ( P , ε ) + ( Q , η ) ∶ = ( P + Q , ε + η ) , ( P , ε ) − ( Q , η ) ∶ = ( P − Q , ε + η ) , K − ( P , ε ) ⋅ ( Q , η ) ∶ = ( PQ , ∥ Q ∥ η + ∥ P ∥ ε + ηε ) ∫ 0 ( P , ε ) ∶ = ( ∫ 0 P ( s ) d s , ε ) t + H F G A New Lower Bound on H(4) 8/17

  45. + Banach Fixed-Point Theorem for A Posteriori Validation ▸ Fixed-point equation T ⋅ ϕ = ϕ with T contracting, ▸ Approximation ϕ ○ to exact solution ϕ ⋆ , General scheme ▸ Compute a posteriori error bounds with Banach theorem. A New Lower Bound on H(4) 9/17

  46. + Banach Fixed-Point Theorem for A Posteriori Validation ▸ Fixed-point equation T ⋅ ϕ = ϕ with T contracting, ▸ Approximation ϕ ○ to exact solution ϕ ⋆ , General scheme ▸ Compute a posteriori error bounds with Banach theorem. Banach Fixed-Point Theorem If ( X , d ) is complete and T contracting of ratio λ < 1, ▸ T admits a unique fixed-point ϕ ⋆ , and ▸ For all ϕ ○ ∈ X , d ( ϕ ○ , T ⋅ ϕ ○ ) ⩽ d ( ϕ ○ , ϕ ⋆ ) ⩽ d ( ϕ ○ , T ⋅ ϕ ○ ) . 1 + λ 1 − λ A New Lower Bound on H(4) 9/17

  47. + Banach Fixed-Point Theorem for A Posteriori Validation ▸ Fixed-point equation T ⋅ ϕ = ϕ with T contracting, ▸ Approximation ϕ ○ to exact solution ϕ ⋆ , General scheme ▸ Compute a posteriori error bounds with Banach theorem. Banach Fixed-Point Theorem If ( X , d ) is complete and T contracting of ratio λ < 1, ▸ T admits a unique fixed-point ϕ ⋆ , and ▸ For all ϕ ○ ∈ X , d ( ϕ ○ , T ⋅ ϕ ○ ) ⩽ d ( ϕ ○ , ϕ ⋆ ) ⩽ d ( ϕ ○ , T ⋅ ϕ ○ ) . 1 + λ 1 − λ ▸ Newton’s method = reformulate F ⋅ ϕ = 0 as T ⋅ ϕ = ϕ with: T ⋅ ϕ = ϕ − A ⋅ F ⋅ ϕ, A New Lower Bound on H(4) 9/17

  48. + Banach Fixed-Point Theorem for A Posteriori Validation ▸ Fixed-point equation T ⋅ ϕ = ϕ with T contracting, ▸ Approximation ϕ ○ to exact solution ϕ ⋆ , General scheme ▸ Compute a posteriori error bounds with Banach theorem. Banach Fixed-Point Theorem If ( X , d ) is complete and T contracting of ratio λ < 1, ▸ T admits a unique fixed-point ϕ ⋆ , and ▸ For all ϕ ○ ∈ X , d ( ϕ ○ , T ⋅ ϕ ○ ) ⩽ d ( ϕ ○ , ϕ ⋆ ) ⩽ d ( ϕ ○ , T ⋅ ϕ ○ ) . 1 + λ 1 − λ ▸ Newton’s method = reformulate F ⋅ ϕ = 0 as T ⋅ ϕ = ϕ with: A ≈ ( D F ( ϕ ○ )) − 1 T ⋅ ϕ = ϕ − A ⋅ F ⋅ ϕ, and check T is contracting. A New Lower Bound on H(4) 9/17

  49. + Banach Fixed-Point Theorem for A Posteriori Validation ▸ Fixed-point equation T ⋅ ϕ = ϕ with T contracting, ▸ Approximation ϕ ○ to exact solution ϕ ⋆ , General scheme ▸ Compute a posteriori error bounds with Banach theorem. Banach Fixed-Point Theorem If ( X , d ) is complete and T contracting of ratio λ < 1, ▸ T admits a unique fixed-point ϕ ⋆ , and ▸ For all ϕ ○ ∈ X , d ( ϕ ○ , T ⋅ ϕ ○ ) ⩽ d ( ϕ ○ , ϕ ⋆ ) ⩽ d ( ϕ ○ , T ⋅ ϕ ○ ) . 1 + λ 1 − λ ▸ Newton’s method = reformulate F ⋅ ϕ = 0 as T ⋅ ϕ = ϕ with: A ≈ ( D F ( ϕ ○ )) − 1 T ⋅ ϕ = ϕ − A ⋅ F ⋅ ϕ, and check T is contracting. ▸ Applications to numerous function space problems. A New Lower Bound on H(4) 9/17

  50. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 A New Lower Bound on H(4) 10/17

  51. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 A New Lower Bound on H(4) 10/17

  52. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 A New Lower Bound on H(4) 10/17

  53. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 A New Lower Bound on H(4) 10/17

  54. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 ▸ Newton-like operator T with unique fixed point ϕ ⋆ = x 2 y down ( x ) : T ⋅ ϕ = ϕ − ψ ( y down ϕ − x 2 ) ψ ( x ) ≈ 1 / y down ( x ) A New Lower Bound on H(4) 10/17

  55. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 ▸ Newton-like operator T with unique fixed point ϕ ⋆ = x 2 y down ( x ) : T ⋅ ϕ = ϕ − ψ ( y down ϕ − x 2 ) ψ ( x ) ≈ 1 / y down ( x ) ▸ Is T contracting? ∥ D T ∥ = ∥ 1 − ψ y down ∥ = λ < 1 A New Lower Bound on H(4) 10/17

  56. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 ▸ Newton-like operator T with unique fixed point ϕ ⋆ = x 2 y down ( x ) : T ⋅ ϕ = ϕ − ψ ( y down ϕ − x 2 ) ψ ( x ) ≈ 1 / y down ( x ) ▸ Is T contracting? ∥ D T ∥ = ∥ 1 − ψ y down ∥ = λ < 1 ▸ Apply the Banach fixed-point theorem: ∥ ϕ ○ − T ⋅ ϕ ○ ∥ = ∥ ψ ( y down ϕ ○ − x 2 )∥ ⩽ η A New Lower Bound on H(4) 10/17

  57. + Division of RPAs ▸ Approximation ϕ ○ ( x ) of ϕ ⋆ = x 2 / y down ( x ) using Chebyshev interpolation: 0 . 8 2 0 . 75 0 . 7 1 . 5 0 . 65 1 0 . 6 0 . 55 0 . 5 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 ▸ Newton-like operator T with unique fixed point ϕ ⋆ = x 2 y down ( x ) : T ⋅ ϕ = ϕ − ψ ( y down ϕ − x 2 ) ψ ( x ) ≈ 1 / y down ( x ) ▸ Is T contracting? ∥ D T ∥ = ∥ 1 − ψ y down ∥ = λ < 1 ▸ Apply the Banach fixed-point theorem: ∥ ϕ ○ − T ⋅ ϕ ○ ∥ = ∥ ψ ( y down ϕ ○ − x 2 )∥ ⩽ η ⇒ ∥ ϕ ○ − ϕ ⋆ ∥ ⩽ η /( 1 − λ ) = ε + A New Lower Bound on H(4) 10/17

  58. + Square Root of a RPA √ f ( x ) where f ( x ) = 0 . 8 − ( x 2 − 0 . 9 ) 2 . ▸ ϕ ○ ( x ) ≈ A New Lower Bound on H(4) 11/17

  59. + Square Root of a RPA √ f ( x ) where f ( x ) = 0 . 8 − ( x 2 − 0 . 9 ) 2 . ▸ ϕ ○ ( x ) ≈ √ ▸ ϕ ⋆ = f unique fixed point of: √ 2 ( ϕ 2 − f ) ψ ( x ) ≈ 1 / ϕ ○ ( x ) ≈ 1 / f ( x ) T ⋅ ϕ = ϕ − ψ A New Lower Bound on H(4) 11/17

  60. + Square Root of a RPA √ f ( x ) where f ( x ) = 0 . 8 − ( x 2 − 0 . 9 ) 2 . ▸ ϕ ○ ( x ) ≈ √ ▸ ϕ ⋆ = f unique fixed point of: √ 2 ( ϕ 2 − f ) ψ ( x ) ≈ 1 / ϕ ○ ( x ) ≈ 1 / f ( x ) T ⋅ ϕ = ϕ − ψ ▸ Is T contracting? ∥ D T ( ϕ )∥ = ∥ 1 − ψ ϕ ∥ ⩽ ∥ 1 − ψϕ ○ ∥ + ∥ ψ ∥∥ ϕ − ϕ ○ ∥ A New Lower Bound on H(4) 11/17

  61. + Square Root of a RPA √ f ( x ) where f ( x ) = 0 . 8 − ( x 2 − 0 . 9 ) 2 . ▸ ϕ ○ ( x ) ≈ √ ▸ ϕ ⋆ = f unique fixed point of: √ 2 ( ϕ 2 − f ) ψ ( x ) ≈ 1 / ϕ ○ ( x ) ≈ 1 / f ( x ) T ⋅ ϕ = ϕ − ψ ▸ Is T contracting? ∥ D T ( ϕ )∥ ⩽ ∥ 1 − ψϕ ○ ∥ + ∥ ψ ∥ r sup λ = ∥ ϕ − ϕ ○ ∥⩽ r 1 . 5 1 . 5 1 1 0 . 5 0 . 5 0 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 r r A New Lower Bound on H(4) 11/17

  62. + Square Root of a RPA √ f ( x ) where f ( x ) = 0 . 8 − ( x 2 − 0 . 9 ) 2 . ▸ ϕ ○ ( x ) ≈ √ ▸ ϕ ⋆ = f unique fixed point of: √ 2 ( ϕ 2 − f ) ψ ( x ) ≈ 1 / ϕ ○ ( x ) ≈ 1 / f ( x ) T ⋅ ϕ = ϕ − ψ ▸ Is T contracting? ▸ Stable neighborhood for ϕ ○ : ∥ D T ( ϕ )∥ ⩽ ∥ 1 − ψϕ ○ ∥ + ∥ ψ ∥ r ∥ ϕ ○ − T ⋅ ϕ ○ ∥ + λ r ⩽ r sup λ = ∥ ϕ − ϕ ○ ∥⩽ r 1 . 5 1 . 5 1 1 0 . 5 0 . 5 0 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 r r A New Lower Bound on H(4) 11/17

  63. + Square Root of a RPA √ f ( x ) where f ( x ) = 0 . 8 − ( x 2 − 0 . 9 ) 2 . ▸ ϕ ○ ( x ) ≈ √ ▸ ϕ ⋆ = f unique fixed point of: √ 2 ( ϕ 2 − f ) ψ ( x ) ≈ 1 / ϕ ○ ( x ) ≈ 1 / f ( x ) T ⋅ ϕ = ϕ − ψ ▸ Is T contracting? ▸ Stable neighborhood for ϕ ○ : ∥ D T ( ϕ )∥ ⩽ ∥ 1 − ψϕ ○ ∥ + ∥ ψ ∥ r ∥ ψ ( ϕ ○ 2 − f )/ 2 ∥ + r (∥ 1 − ψϕ ○ ∥ + ∥ ψ ∥ r ) ⩽ r sup λ = ∥ ϕ − ϕ ○ ∥⩽ r 1 . 5 1 . 5 1 1 0 . 5 0 . 5 0 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 r r A New Lower Bound on H(4) 11/17

  64. + Square Root of a RPA √ f ( x ) where f ( x ) = 0 . 8 − ( x 2 − 0 . 9 ) 2 . ▸ ϕ ○ ( x ) ≈ √ ▸ ϕ ⋆ = f unique fixed point of: √ 2 ( ϕ 2 − f ) ψ ( x ) ≈ 1 / ϕ ○ ( x ) ≈ 1 / f ( x ) T ⋅ ϕ = ϕ − ψ ▸ Is T contracting? ▸ Stable neighborhood for ϕ ○ : ∥ D T ( ϕ )∥ ⩽ ∥ 1 − ψϕ ○ ∥ + ∥ ψ ∥ r ∥ ψ ( ϕ ○ 2 − f )/ 2 ∥ + r (∥ 1 − ψϕ ○ ∥ + ∥ ψ ∥ r ) ⩽ r sup λ = ∥ ϕ − ϕ ○ ∥⩽ r 1 . 5 1 . 5 1 1 0 . 5 0 . 5 0 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 r r ▸ Apply the Banach fixed-point theorem! A New Lower Bound on H(4) 11/17

  65. + Rigorous Computation of an Abelian Integral Using Degree N = 10 √ 0 . 8 − ( x 2 − 0 . 9 ) 2 : ▸ · 10 − 5 1 0 − 1 0 . 6 0 . 8 1 1 . 2 A New Lower Bound on H(4) 12/17

  66. + Rigorous Computation of an Abelian Integral Using Degree N = 10 √ 0 . 8 − ( x 2 − 0 . 9 ) 2 : ▸ · 10 − 5 1 0 − 1 √ √ 0 . 6 0 . 8 1 1 . 2 0 . 8 − ( x 2 − 0 . 9 ) 2 : ▸ y down ( x ) = 1 . 1 − · 10 − 5 1 0 − 1 0 . 6 0 . 8 1 1 . 2 A New Lower Bound on H(4) 12/17

  67. + Rigorous Computation of an Abelian Integral Using Degree N = 10 √ 0 . 8 − ( x 2 − 0 . 9 ) 2 : ▸ · 10 − 5 1 0 − 1 √ √ 0 . 6 0 . 8 1 1 . 2 0 . 8 − ( x 2 − 0 . 9 ) 2 : ▸ y down ( x ) = 1 . 1 − · 10 − 5 1 0 − 1 √ √ 0 . 6 0 . 8 1 1 . 2 0 . 8 − ( x 2 − 0 . 9 ) 2 : ▸ x 2 / y down ( x ) = x 2 / y down ( x ) = 1 . 1 − 1 · 10 − 4 0 . 5 0 − 0 . 5 − 1 0 . 6 0 . 8 1 1 . 2 A New Lower Bound on H(4) 12/17

  68. + Validation of Our Result 2 ( × 10 − 4 ) 1 0 − 1 h − 2 − 0 . 5 − 0 . 45 − 0 . 4 − 0 . 35 − 0 . 3 − 0 . 25 1 ( × 10 − 7 ) 0 . 5 0 − 0 . 5 h − 1 -0.315 -0.310 -0.305 A New Lower Bound on H(4) 13/17

  69. + Validation of Our Result 2 ( × 10 − 4 ) N = 12 N = 22 1 0 N = 24 − 1 N = 16 h − 2 − 0 . 5 − 0 . 45 − 0 . 4 − 0 . 35 − 0 . 3 − 0 . 25 1 ( × 10 − 7 ) N = 80 0 . 5 0 N = 130 − 0 . 5 N = 100 N = 240 h − 1 -0.315 -0.310 -0.305 A New Lower Bound on H(4) 13/17

  70. + Validation of Our Result 4 × 5 + 2 × 2 = 24 A New Lower Bound on H(4) 13/17

  71. Outline 1 A quartic example for Hilbert 16th problem 2 Computing Abelian integrals with rigorous polynomial approximations 3 Wronskian and extended Chebyshev systems 4 Conclusion A New Lower Bound on H(4)

  72. + Wronskian and Extended Chebyshev Systems ( f 0 , f 1 , . . . , f n ) extended Chebyshev system if all combination α 0 f 0 + ⋅ ⋅ ⋅ + α i f i has at most i zeros, for 0 ⩽ i ⩽ n . A New Lower Bound on H(4) 14/17

  73. + Wronskian and Extended Chebyshev Systems ( f 0 , f 1 , . . . , f n ) extended Chebyshev system if all combination α 0 f 0 + ⋅ ⋅ ⋅ + α i f i has at most i zeros, for 0 ⩽ i ⩽ n . ⇔ W 0 ( x ) , . . . , W n ( x ) ≠ 0 for all x : � � � f 0 ( x ) f 1 ( x ) f i ( x ) � � � � � � . . . � � � � 0 ( x ) 1 ( x ) i ( x ) � � � � f ′ f ′ f ′ � . . . W i ( x ) = � � � � ⋮ ⋮ ⋱ ⋮ � � � � � � � � � � � � ( x ) ( x ) ( x ) � � f ( i ) f ( i ) f ( i ) � � . . . 0 1 i A New Lower Bound on H(4) 14/17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend