telescopes using an uav based device
play

Telescopes using an UAV-based device A. Martnez Picar, C. Marqu, M. - PowerPoint PPT Presentation

International Conference on Electromagnetics in Advanced Applications September 7-11, 2015 Torino Italy Antenna Pattern Calibration of Radio Telescopes using an UAV-based device A. Martnez Picar, C. Marqu, M. Anciaux, H. Lamy, and S.


  1. International Conference on Electromagnetics in Advanced Applications September 7-11, 2015 Torino – Italy Antenna Pattern Calibration of Radio Telescopes using an UAV-based device A. Martínez Picar, C. Marqué, M. Anciaux, H. Lamy, and S. Ranvier Solar-Terrestrial Belgian Institute for Royal Observatory Centre of Excellence Space Aeronomy of Belgium

  2. The Humain Radio-Astronomy Station

  3. The Humain Radio-Astronomy Station LPDA (e-Callisto) 45 – 400 MHz 6m Parabolic Reflector 300 – 800 MHz BRAMS Yagi Array ~ 50 MHz

  4. Antenna Pattern Characterization Humain Antenna Systems  LPDA Proper Gain Real  6m-dish Characterization Flux Density  BRAMS Array

  5. Antenna Pattern Characterization Humain Antenna Systems  LPDA Proper Gain Real  6m-dish Characterization Flux Density  BRAMS Array Measurements using 𝑔𝑔 ≥ 2𝑀 2 Well-Known Test 𝐸 𝜇 Signal (source) located at

  6. Antenna Pattern Characterization Humain Antenna Systems 3 ~ 27 m  LPDA Proper Gain Real 75 ~ 195 m  6m-dish Characterization Flux Density  BRAMS Array Measurements ~ 3 m using 𝑔𝑔 ≥ 2𝑀 2 Well-Known Test 𝐸 𝜇 Signal (source) located at

  7. Measurements using a test signal RF Unit H AUT Spectrum Analyzer

  8. Measurements using an UAV Flight Path UAV RF Unit H AUT Spectrum Analyzer

  9. RAMON System Radio Flight Path UAV Antenna Measurement ONsite RF Unit H AUT θ φ Avionics & Spectrum Sync Flight Log PC Analyzer Clock

  10. Unmanned Aerial Vehicle (UAV) OktoXL – Mikrokopter • Payload: 2.6 kg (max) • Range: 500 m • GPS-aided navigation • Barometric altimeter • ~ 15 min autonomy

  11. Unmanned Aerial Vehicle (UAV) • Predefined waypoints-based autonomous flight path • Position and hold mode with heading control (3º) • 5 satellites (min): ~3 m accuracy OktoXL – Mikrokopter • Payload: 2.6 kg (max) • Range: 500 m • GPS-aided navigation • Barometric altimeter • ~ 15 min autonomy

  12. Unmanned Aerial Vehicle (UAV) • Predefined waypoints-based autonomous flight path • Position and hold mode with heading control (3º) • 5 satellites (min): ~3 m accuracy OktoXL – Mikrokopter • Payload: 2.6 kg (max) • Range: 500 m • GPS-aided navigation • Barometric altimeter • ~ 15 min autonomy

  13. RF Unit Short Monopole Antenna SBC (Raspberry Pi) Battery Bank Metallic Mesh RF signal generator

  14. RF Unit Z = 50 Ω Short Monopole Antenna Freq Control SBC (Raspberry Pi) +6h autonomy Battery Bank Metallic Mesh EM isolation RF signal generator -6 dBm (max)

  15. Receiver / Data Logger AUT Spectrum Analyzer • Python script (GUI) • SCPI commands over FTP • Max Hold mode • Output: received power & timestamps Ethernet

  16. Measurement Strategy “Static” Waypoints every 10º in azimuth + Circular paths around AUT, separated 10º in elevation Avionics & Flight Received Logging PC Spectrum Signal Analyzer

  17. Measurement Strategy “Static” Waypoints every 10º in azimuth + Circular paths around AUT, separated 10º in elevation Avionics & Flight Received Ethernet Logging PC Spectrum Signal Analyzer

  18. Measurement Strategy “Static” Waypoints every 10º in azimuth + Circular paths around AUT, separated 10º in elevation Avionics & Flight Received Ethernet Logging PC Spectrum Signal Analyzer

  19. Data Processing t 1 : p 1 [ f 1 ], p 1 [ f 2 ], p 1 [ f 3 ], …, p 1 [ f m ] t 2 : p 2 [ f 1 ], p 2 [f 2 ], p 2 [ f 3 ], …, p 2 [ f m ] t 3 : p 3 [ f 1 ], p 3 [f 2 ], p 3 [ f 3 ], …, p 3 [ f m ] … t x : p x [ f 1 ], p x [f 2 ], p x [ f 3 ], …, p x [ f m ] … … t y : p y [ f 1 ], p y [f 2 ], p y [ f 3 ], …, p y [ f m ] t n-1 : p n-1 [ f 1 ], p n-1 [f 2 ], …, p n-1 [ f m ] t n : p n [ f 1 ], p n [f 2 ], p n [ f 3 ], …, p n [ f m ] Flight Track Received Power Log

  20. Data Processing t 1 : p 1 [ f 1 ], p 1 [ f 2 ], p 1 [ f 3 ], …, p 1 [ f m ] t 2 : p 2 [ f 1 ], p 2 [f 2 ], p 2 [ f 3 ], …, p 2 [ f m ] t 3 : p 3 [ f 1 ], p 3 [f 2 ], p 3 [ f 3 ], …, p 3 [ f m ] … t A : lon A , lat A , alt A , speed A t x : p x [ f 1 ], p x [f 2 ], p x [ f 3 ], …, p x [ f m ] … … t y : p y [ f 1 ], p y [f 2 ], p y [ f 3 ], …, p y [ f m ] t n-1 : p n-1 [ f 1 ], p n-1 [f 2 ], …, p n-1 [ f m ] t n : p n [ f 1 ], p n [f 2 ], p n [ f 3 ], …, p n [ f m ] Flight Track Received Power Log

  21. Data Processing Quasi-Static Waypoints Group I t 1 : p 1 [ f 1 ], p 1 [ f 2 ], p 1 [ f 3 ], …, p 1 [ f m ] t 2 : p 2 [ f 1 ], p 2 [f 2 ], p 2 [ f 3 ], …, p 2 [ f m ] t 3 : p 3 [ f 1 ], p 3 [f 2 ], p 3 [ f 3 ], …, p 3 [ f m ] Group II … t A : lon A , lat A , alt A , speed A t x : p x [ f 1 ], p x [f 2 ], p x [ f 3 ], …, p x [ f m ] Group III … … t y : p y [ f 1 ], p y [f 2 ], p y [ f 3 ], …, p y [ f m ] t n-1 : p n-1 [ f 1 ], p n-1 [f 2 ], …, p n-1 [ f m ] t n : p n [ f 1 ], p n [f 2 ], p n [ f 3 ], …, p n [ f m ] Flight Track Received Power Log

  22. Data Processing Quasi-Static Waypoints Group I t 1 : p 1 [ f 1 ], p 1 [ f 2 ], p 1 [ f 3 ], …, p 1 [ f m ] t 2 : p 2 [ f 1 ], p 2 [f 2 ], p 2 [ f 3 ], …, p 2 [ f m ] t 3 : p 3 [ f 1 ], p 3 [f 2 ], p 3 [ f 3 ], …, p 3 [ f m ] Group II … t A : lon A , lat A , alt A , speed A t x : p x [ f 1 ], p x [f 2 ], p x [ f 3 ], …, p x [ f m ] Group III … … t y : p y [ f 1 ], p y [f 2 ], p y [ f 3 ], …, p y [ f m ] t n-1 : p n-1 [ f 1 ], p n-1 [f 2 ], …, p n-1 [ f m ] t n : p n [ f 1 ], p n [f 2 ], p n [ f 3 ], …, p n [ f m ] Flight Track Received Power Log

  23. Data Processing Quasi-Static Waypoints Group I t 1 : p 1 [ f 1 ], p 1 [ f 2 ], p 1 [ f 3 ], …, p 1 [ f m ] t 2 : p 2 [ f 1 ], p 2 [f 2 ], p 2 [ f 3 ], …, p 2 [ f m ] t 3 : p 3 [ f 1 ], p 3 [f 2 ], p 3 [ f 3 ], …, p 3 [ f m ] Group II … t A : lon A , lat A , alt A , speed A t x : p x [ f 1 ], p x [f 2 ], p x [ f 3 ], …, p x [ f m ] Group III … … t y : p y [ f 1 ], p y [f 2 ], p y [ f 3 ], …, p y [ f m ] t n-1 : p n-1 [ f 1 ], p n-1 [f 2 ], …, p n-1 [ f m ] t n : p n [ f 1 ], p n [f 2 ], p n [ f 3 ], …, p n [ f m ] Flight Track Received Power Log

  24. Data Processing Group I t 1 : p 1 [ f 1 ], p 1 [ f 2 ], p 1 [ f 3 ], …, p 1 [ f m ] t 2 : p 2 [ f 1 ], p 2 [f 2 ], p 2 [ f 3 ], …, p 2 [ f m ] t 3 : p 3 [ f 1 ], p 3 [f 2 ], p 3 [ f 3 ], …, p 3 [ f m ] Group II … t A : lon A , lat A , alt A , speed A t x : p x [ f 1 ], p x [f 2 ], p x [ f 3 ], …, p x [ f m ] Group III … … t y : p y [ f 1 ], p y [f 2 ], p y [ f 3 ], …, p y [ f m ] t n-1 : p n-1 [ f 1 ], p n-1 [f 2 ], …, p n-1 [ f m ] t n : p n [ f 1 ], p n [f 2 ], p n [ f 3 ], …, p n [ f m ] Flight Track Received Power Log

  25. Data Processing median(lon I ; lat I ; alt I ) t 1 : p 1 [ f 1 ], p 1 [ f 2 ], p 1 [ f 3 ], …, p 1 [ f m ] median ( p 1 ; p 2 ) for each f t 2 : p 2 [ f 1 ], p 2 [f 2 ], p 2 [ f 3 ], …, p 2 [ f m ] t 3 : p 3 [ f 1 ], p 3 [f 2 ], p 3 [ f 3 ], …, p 3 [ f m ] median(lon II ; lat II ; alt II ) … median ( p x ; p x+1 ; …) for each f t x : p x [ f 1 ], p x [f 2 ], p x [ f 3 ], …, p x [ f m ] median(lon III ; lat III ; alt III ) … … t y : p y [ f 1 ], p y [f 2 ], p y [ f 3 ], …, p y [ f m ] median(lon N ; lat N ; alt N ) t n-1 : p n-1 [ f 1 ], p n-1 [f 2 ], …, p n-1 [ f m ] median (…; p n-1 ; p n ) for each f t n : p n [ f 1 ], p n [f 2 ], p n [ f 3 ], …, p n [ f m ] Flight Track Received Power Log

  26. First Task Pattern of the Test Signal Source • The UAV will be always oriented towards the AUT • Measured with a calibrated antenna 𝑄 𝑆 = 𝑄 𝑈 − 𝑀 + 𝐻 𝑈 + 𝐻 𝑆

  27. First Task Pattern of the Test Signal Source • The UAV will be always oriented towards the AUT • Measured with a calibrated antenna 𝑄 𝑆 = 𝑄 𝑈 − 𝑀 + 𝐻 𝑈 + 𝐻 𝑆

  28. Proof of Concept • AUT: 6m-dish antenna • f = 328.5 MHz • Flights @ different distances • 1 day mission 𝑄 𝑆 = 𝑄 𝑈 − 𝑀 + 𝐻 𝑈 + 𝐻 𝑆

  29. Numerical Simulation

  30. Measurements

  31. Discussion • Statistical approach (more points are needed) • Differentiate measurements under dry and humid conditions • Variability of points location is less sensitive flying far away • Authorization (BELGOCONTROL) – permission for flying up to 120 m agl

  32. International Conference on Electromagnetics in Advanced Applications September 7-11, 2015 Torino – Italy Thank you! Antonio Martínez Picar antonio.martinez@observatory.be Solar-Terrestrial Belgian Institute for Royal Observatory Centre of Excellence Space Aeronomy of Belgium

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend