teilchenphysik mit h chstenergetischen beschleunigern
play

Teilchenphysik mit hchstenergetischen Beschleunigern (Higgs & - PowerPoint PPT Presentation

Teilchenphysik mit hchstenergetischen Beschleunigern (Higgs & Co) 4. Detectors II 13.11.2017 Prof. Dr. Siegfried Bethke Dr. Frank Simon Detectors: Overview Lecture Detectors I Introduction, overall detector concepts Detector


  1. Teilchenphysik mit höchstenergetischen Beschleunigern (Higgs & Co) 4. Detectors II 13.11.2017 Prof. Dr. Siegfried Bethke Dr. Frank Simon

  2. Detectors: Overview • Lecture Detectors I • Introduction, overall detector concepts • Detector systems at hadron colliders • Basics of particle detection: Interaction with matter • Methods for particle detection • Lecture Detectors II • Tracking detectors: Basics • Semiconductor trackers • Calorimeters Teilchenphysik mit höchstenergetischen Beschleunigern: 2 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  3. Momentum Measurement with Trackers Teilchenphysik mit höchstenergetischen Beschleunigern: 3 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  4. Tracking: Momentum Measurement in B-Field • Charged particles are deflected in magnetic field • only acts on the component transverse to the field p T GeV /c = 0 . 3 B r The radius of the trajectory gives transverse momentum: T m Example: 
 45 GeV µ, 4 T field: 
 r = 37.5 m Teilchenphysik mit höchstenergetischen Beschleunigern: 4 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  5. Tracking: Momentum Measurement in B-Field • Charged particles are deflected in magnetic field • only acts on the component transverse to the field p T GeV /c = 0 . 3 B r The radius of the trajectory gives transverse momentum: T m Example: 
 • parallel to the field there is no deflection 45 GeV µ, 4 T field: 
 r = 37.5 m ➫ the particle moves on a helix given by field and p T magnetic field Teilchenphysik mit höchstenergetischen Beschleunigern: 4 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  6. Tracking: Momentum Measurement in B-Field • Charged particles are deflected in magnetic field • only acts on the component transverse to the field p T GeV /c = 0 . 3 B r The radius of the trajectory gives transverse momentum: T m Example: 
 • parallel to the field there is no deflection 45 GeV µ, 4 T field: 
 r = 37.5 m ➫ the particle moves on a helix given by field and p T The total momentum is determined with the “dip angle” in addition to p T : p T p p = p T /sin λ λ p L magnetic field Teilchenphysik mit höchstenergetischen Beschleunigern: 4 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  7. Momentum Measurement in B-Field II • In real-world applications one does not measure a full circle, but just a slightly bent track segment • Characteristic variable: sagitta Teilchenphysik mit höchstenergetischen Beschleunigern: 5 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  8. Momentum Measurement in B-Field II • In real-world applications one does not measure a full circle, but just a slightly bent track segment • Characteristic variable: sagitta Mathematical calculation: � r 2 − L 2 s = r − 4 2 + L 2 L 2 s ⇤ r = 8 s ( s ⇥ L ) � 8 s Teilchenphysik mit höchstenergetischen Beschleunigern: 5 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  9. Momentum Measurement in B-Field II • In real-world applications one does not measure a full circle, but just a slightly bent track segment • Characteristic variable: sagitta Mathematical calculation: � r 2 − L 2 s = r − 4 2 + L 2 L 2 s ⇤ r = 8 s ( s ⇥ L ) � 8 s Taking the relation of radius, momentum and B-field gives: 0 . 3 B L 2 p T 0 . 3 B ⇒ s = r = 8 p T Teilchenphysik mit höchstenergetischen Beschleunigern: 5 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  10. Momentum Measurement in B-Field III • A minimum of 3 points are required to determine the sagitta • Taking into account the point-by-point measurement uncertainty: N � σ 2 ( x ) 1 σ 2 ( s ) = für N = 3 there are 2 degrees of freedom N − 1 i =1 sagitta error uncertainty of a single point σ ( s ) Sagitta − Fehler , σ ( x ) Messfehler eines Punktes Teilchenphysik mit höchstenergetischen Beschleunigern: 6 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  11. Momentum Measurement in B-Field III • A minimum of 3 points are required to determine the sagitta • Taking into account the point-by-point measurement uncertainty: N � σ 2 ( x ) 1 σ 2 ( s ) = für N = 3 there are 2 degrees of freedom N − 1 i =1 sagitta error uncertainty of a single point σ ( s ) Sagitta − Fehler , σ ( x ) Messfehler eines Punktes 0 . 3 B L 2 with p T = 8 s √ � 3 2 σ ( x ) 8 p T σ ( p T ) σ ( s ) 3 σ ( s ) = 2 σ ( x ) ⇒ = = 0 . 3 B L 2 p T s Teilchenphysik mit höchstenergetischen Beschleunigern: 6 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  12. Momentum Measurement in B-Field III • A minimum of 3 points are required to determine the sagitta • Taking into account the point-by-point measurement uncertainty: N � σ 2 ( x ) 1 σ 2 ( s ) = für N = 3 there are 2 degrees of freedom N − 1 i =1 sagitta error uncertainty of a single point σ ( s ) Sagitta − Fehler , σ ( x ) Messfehler eines Punktes 0 . 3 B L 2 with p T = 8 s √ � 3 2 σ ( x ) 8 p T σ ( p T ) σ ( s ) 3 σ ( s ) = 2 σ ( x ) ⇒ = = 0 . 3 B L 2 p T s generalization to an arbitrary number of points: σ ( p T ) σ ( x ) � R.L. Gluckstern, = 720 / ( N + 4) p T NIM 24, 381 (1963) 0 . 3 B L 2 p T Teilchenphysik mit höchstenergetischen Beschleunigern: 6 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  13. Momentum Measurement in B-Field III • A minimum of 3 points are required to determine the sagitta • Taking into account the point-by-point measurement uncertainty: N � σ 2 ( x ) 1 σ 2 ( s ) = für N = 3 there are 2 degrees of freedom N − 1 i =1 sagitta error uncertainty of a single point σ ( s ) Sagitta − Fehler , σ ( x ) Messfehler eines Punktes 0 . 3 B L 2 with p T = 8 s √ � 3 2 σ ( x ) 8 p T σ ( p T ) σ ( s ) 3 σ ( s ) = 2 σ ( x ) ⇒ = = 0 . 3 B L 2 p T s generalization to an arbitrary number of points: σ ( p T ) σ ( x ) � R.L. Gluckstern, = 720 / ( N + 4) p T NIM 24, 381 (1963) 0 . 3 B L 2 p T ➠ The bigger B, lever arm L and the number of measurements and the better the spatial resolution, the higher is the accuracy of the momentum measurement 
 example (ATLAS Si-Tracker): N =7, L = 0.5, B = 2T, σ (x) = 20 µm, p t = 5 GeV/c: 
 Δ p t /p t = 0.5 %, r = 8.3 m, s = 3.75 mm 
 Teilchenphysik mit höchstenergetischen Beschleunigern: 6 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  14. Conflicting Effect: Multiple Scattering • Charged particles are deflected when traversing matter: 
 Multiple scattering via Coulomb interaction θ 0 = 13 . 6 MeV 1 � θ 0 = θ rms 2 θ rms z x/X 0 [1 + 0 . 038 ln( x/X 0 )] plane = space β c p √ • valid for relativistic particles ( β = 1), the central 98% of the distribution, for layer thicknesses from 10 -3 X 0 to 100 X 0 with an accuracy of better than 11% Teilchenphysik mit höchstenergetischen Beschleunigern: 7 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  15. Multiple Scattering vs Spatial Resolution • Two e ff ects influence the momentum resolution σ (p T )/p T 
 of tracking systems: • Momentum resolution of the tracker: σ ( p T ) ∝ p T Teilchenphysik mit höchstenergetischen Beschleunigern: 8 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  16. Multiple Scattering vs Spatial Resolution • Two e ff ects influence the momentum resolution σ (p T )/p T 
 of tracking systems: • Momentum resolution of the tracker: σ ( p T ) ∝ p T • Influence of multiple scattering θ ∝ 1 and with that also the spatial 
 σ ( x ) MS ∝ 1 inaccuracy due to scattering: p p Teilchenphysik mit höchstenergetischen Beschleunigern: 8 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  17. Multiple Scattering vs Spatial Resolution • Two e ff ects influence the momentum resolution σ (p T )/p T 
 of tracking systems: • Momentum resolution of the tracker: σ ( p T ) ∝ p T • Influence of multiple scattering θ ∝ 1 and with that also the spatial 
 σ ( x ) MS ∝ 1 inaccuracy due to scattering: p p σ ( p T ) We know: (taking the spread induced by multiple ∝ σ ( x ) MS × p T scattering as a “spatial resolution”) p T � σ ( p T ) and with that: � = const � p T � MS Teilchenphysik mit höchstenergetischen Beschleunigern: 8 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

  18. Multiple Scattering vs Spatial Resolution • Two e ff ects influence the momentum resolution σ (p T )/p T 
 of tracking systems: • Momentum resolution of the tracker: σ ( p T ) ∝ p T • Influence of multiple scattering θ ∝ 1 and with that also the spatial 
 σ ( x ) MS ∝ 1 inaccuracy due to scattering: p p σ ( p T ) We know: (taking the spread induced by multiple ∝ σ ( x ) MS × p T scattering as a “spatial resolution”) p T � σ ( p T ) and with that: � = const � p T � MS The measurement of low-momentum particles is limited by multiple scattering! At higher momenta the intrinsic resolution of the detector dominates. Teilchenphysik mit höchstenergetischen Beschleunigern: 8 Frank Simon (fsimon@mpp.mpg.de) WS 17/18, 04: Detectors II

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend