taking the muon for a spin
play

Taking the Muon for a Spin Thomas Gadfort Fermilab 47 th FNAL Users - PowerPoint PPT Presentation

Taking the Muon for a Spin Thomas Gadfort Fermilab 47 th FNAL Users Meeting Spin and the Muon Anomalous Magnetic Moment Measuring a with Polarized Muons The BNL Result and Goals for Fermilab Muon g-2 Last Summer and This Summers Big Move


  1. Taking the Muon for a Spin Thomas Gadfort Fermilab 47 th FNAL Users Meeting Spin and the Muon Anomalous Magnetic Moment Measuring a µ with Polarized Muons The BNL Result and Goals for Fermilab Muon g-2 Last Summer and This Summer’s Big Move

  2. Spin and Its Observable Effects In the Standard Model (SM), the muon is a point-like spin ½ particle. With spin comes a magnetic dipole moment (MDM) of strength: µ = g q ~ 2 m ~ s Dirac showed that g = 2 for the electron as observed. The 1930‘s and 40’s saw several breakthrough measurements of the g- factor that lead to a new understanding of particles and substructure. Phys. Rev. 72 (1947) g e = 2 . 00229(8) ≈ 2(1 + α / 2 π ) g p ≈ 5 . 6 , g n ≈ − 3 . 8 → QM corrections → nucleon substructure Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 2

  3. Spin and Its Observable Effects In the Standard Model (SM), the muon is a point-like spin ½ particle. With spin comes a magnetic dipole moment (MDM) of strength: µ = g q ~ 2 m ~ s Dirac showed that g = 2 for the electron as observed. The 1930‘s and 40’s saw several breakthrough measurements of the g- factor that lead to a new understanding of particles and substructure. g e = 2(1 + α 2 π ) ≈ 2 . 00232 Phys. Rev. 72 (1947) g e = 2 . 00229(8) ≈ 2(1 + α / 2 π ) � ∗ ` + ` + g p ≈ 5 . 6 , g n ≈ − 3 . 8 → QM corrections → nucleon substructure D. Hanneke, S. Fogwell, and G. Gabrielse g e / 2 = 1 . 001 159 652 180 73(28) PRL 100, 120801 (2008) Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 2

  4. Understanding The Muon There is a rich history of muon g-factor measurements starting in the 1950’s at Nevis. g µ = 2(10%) Evidence that the muon is a fundamental particle. Phys. Rev. 105, 1415–1417 (1957) The past 50 years have seen dramatic improvements in precision and experimental techniques. + Hadronic + Weak + Hadronic Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 3

  5. Understanding The Muon There is a rich history of muon g-factor measurements starting in the 1950’s at Nevis. g µ = 2(10%) Evidence that the muon is a fundamental particle. Phys. Rev. 105, 1415–1417 (1957) The past 50 years have seen dramatic improvements in precision and experimental techniques. CERN I + Hadronic + Weak + Hadronic Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 3

  6. Understanding The Muon There is a rich history of muon g-factor measurements starting in the 1950’s at Nevis. g µ = 2(10%) Evidence that the muon is a fundamental particle. Phys. Rev. 105, 1415–1417 (1957) The past 50 years have seen dramatic improvements in precision and experimental techniques. CERN I + Hadronic + Weak + Hadronic CERN II Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 3

  7. Understanding The Muon There is a rich history of muon g-factor measurements starting in the 1950’s at Nevis. g µ = 2(10%) Evidence that the muon is a fundamental particle. Phys. Rev. 105, 1415–1417 (1957) The past 50 years have seen dramatic improvements in precision and experimental techniques. CERN I CERN III + Hadronic + Weak + Hadronic CERN II Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 3

  8. Understanding The Muon There is a rich history of muon g-factor measurements starting in the 1950’s at Nevis. g µ = 2(10%) Evidence that the muon is a fundamental particle. Phys. Rev. 105, 1415–1417 (1957) The past 50 years have seen dramatic improvements in precision and experimental techniques. CERN I CERN III + Hadronic + Weak BNL + Hadronic CERN II Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 3

  9. E821 Brookhaven Muon g-2 Muon injection greatly improved statistics. Continuously wound superconducting (SC) main magnet coils + tunable shimming kit ➝ Reduced multipole field terms. Superconducting coil winding Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 4

  10. E821 Brookhaven Muon g-2 Muon injection greatly improved statistics. Continuously wound superconducting (SC) main magnet coils + tunable shimming kit ➝ Reduced multipole field terms. Dramatic improvement in field uniformity Contours in [ppm]! 10 Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 4

  11. Storage Ring Measurement Technique ( I) In a dipole magnetic field: Muon momentum revolution frequency, ω C ω C = eB mc γ Muon spin revolution frequency, ω S ω S = geB 2 mc γ + (1 − γ ) eB mc γ Muon anomaly revolution frequency, ω a ◆ eB ✓ g − 2 eB ω a ≡ ω S − ω C = mc = a µ mc 2 Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 5

  12. Storage Ring Measurement Technique ( II) Lucky break from parity violation Source of ν µ Polarized Muons γ µ (1 − γ 5 ) π µ Measure Positron Energy Measure Muon Spin Weak decay correlates Highest energy positrons when spin muon spin and electron momentum and momentum are aligned. ν µ ¯ ν e µ e Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 6

  13. Storage Ring Measurement Technique ( II) Lucky break from parity violation Source of ν µ Polarized Muons γ µ (1 − γ 5 ) π µ Measure Positron Energy Measure Muon Spin Weak decay correlates Highest energy positrons when spin muon spin and electron momentum and momentum are aligned. ν µ ¯ ν e µ e E electron Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 6

  14. Storage Ring Measurement Technique ( II) Lucky break from parity violation Source of ν µ Polarized Muons γ µ (1 − γ 5 ) π µ Measure Positron Energy Measure Muon Spin Weak decay correlates Highest energy positrons when spin muon spin and electron momentum and momentum are aligned. ν µ Count N(e) above ¯ ν e µ fixed threshold. Oscillation rate ∝ a µ e E electron Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 6

  15. The Wiggle Plot, ω a , ω p , and a µ Data E821 data ⧳ 5 Param Fit N ( t ) = N 0 e − t γτ [1 + A cos( ω a t + φ )] — Counts per 150 ns 6 10 momentum cut 5 10 4 10 3 10 2 10 0 20 40 60 80 100 3 x10 Counts per 150 ns Counts per 150 ns 3000 120 <A>=0.4 2500 100 2000 80 1500 60 1000 40 500 20 0 0 32 34 36 38 40 692 694 696 698 time ( s) time ( s) µ µ 4 billion muon decays ( ≈ 15% yield >1.8 GeV positrons) Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 7

  16. The Wiggle Plot, ω a , ω p , and a µ Data E821 data ⧳ 5 Param Fit N ( t ) = N 0 e − t γτ [1 + A cos( ω a t + φ )] — Counts per 150 ns + 6 10 momentum cut 5 10 4 10 3 ⇒ ω p ( ⟨ B ⟩ ) 10 2 10 0 20 40 60 80 100 3 x10 Counts per 150 ns Counts per 150 ns 3000 120 <A>=0.4 2500 100 2000 80 1500 60 1000 40 500 20 0 0 32 34 36 38 40 692 694 696 698 time ( s) time ( s) µ µ 4 billion muon decays ( ≈ 15% yield >1.8 GeV positrons) Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 7

  17. The Wiggle Plot, ω a , ω p , and a µ Data E821 data ⧳ 5 Param Fit N ( t ) = N 0 e − t γτ [1 + A cos( ω a t + φ )] — Counts per 150 ns + 6 10 momentum cut 5 10 4 10 3 ⇒ ω p ( ⟨ B ⟩ ) 10 2 10 0 20 40 60 80 100 3 x10 Counts per 150 ns Counts per 150 ns 3000 120 <A>=0.4 2500 100 Add prior knowledge... 2000 80 1500 60 1000 40 500 20 ω a / ω 0 0 0 32 34 36 38 40 692 694 696 698 p a µ = time ( s) time ( s) µ µ µ µ /µ p − ω a / ω 0 4 billion muon decays p ( ≈ 15% yield >1.8 GeV positrons) Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 7

  18. The Wiggle Plot, ω a , ω p , and a µ Data E821 data ⧳ 5 Param Fit N ( t ) = N 0 e − t γτ [1 + A cos( ω a t + φ )] — Counts per 150 ns + 6 10 momentum cut 5 10 4 10 3 ⇒ ω p ( ⟨ B ⟩ ) 10 2 10 0 20 40 60 80 100 3 x10 Counts per 150 ns Counts per 150 ns 3000 120 <A>=0.4 2500 100 Add prior knowledge... 2000 80 a E821 = 0 . 00 116 592 089(63) 1500 60 µ 1000 40 500 20 ω a / ω 0 a SM 0 0 = 0 . 00 116 591 802(49) 32 34 36 38 40 692 694 696 698 p a µ = time ( s) time ( s) µ µ µ µ µ /µ p − ω a / ω 0 4 billion muon decays p ( ≈ 15% yield >1.8 GeV positrons) Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 7

  19. The Wiggle Plot, ω a , ω p , and a µ Data E821 data ⧳ 5 Param Fit N ( t ) = N 0 e − t γτ [1 + A cos( ω a t + φ )] — Counts per 150 ns + 6 10 momentum cut 5 10 4 10 3 ⇒ ω p ( ⟨ B ⟩ ) 10 2 10 0 20 40 60 80 100 3 x10 Counts per 150 ns Counts per 150 ns 3000 120 <A>=0.4 2500 100 Add prior knowledge... 2000 80 a E821 = 0 . 00 116 592 089(63) 1500 60 a E821 − a SM = 287 ± 80 µ 1000 40 µ µ 500 20 ω a / ω 0 a SM 0 0 = 0 . 00 116 591 802(49) >3 σ From SM Prediction! 32 34 36 38 40 692 694 696 698 p a µ = time ( s) time ( s) µ µ µ µ µ /µ p − ω a / ω 0 4 billion muon decays p ( ≈ 15% yield >1.8 GeV positrons) Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 7

  20. Explanations Standard Model calculation is incomplete/wrong? a µ = a QED + a EW + a Had µ µ µ Calculated out to 5 loops! T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio Phys. 287 Rev. Lett. 109 111807 Thomas Gadfort “Taking The Muon For a Spin”, 2014 Users Meeting 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend