taka matsubara nagoya u daikoen takehara
play

Taka Matsubara (Nagoya U.) - PowerPoint PPT Presentation

Taka Matsubara (Nagoya U.) @Daikoen, Takehara 2011/6/8 Observables in LSS Redshift survey is a useful probe of density fields in cosmology number density of galaxies


  1. 宇宙の大規模構造における 観測可能量と摂動論 Taka Matsubara (Nagoya U.) @Daikoen, Takehara 2011/6/8

  2. Observables in LSS • Redshift survey is a useful probe of density fields in cosmology • number density of galaxies ~ mass density • Issues to resolve: • Redshift space distortions • galaxy biasing

  3. Bias between mass and objects • Mass density number density (in general) • Densities of both mass and astronomical objects are determined by initial density field • There should be a relation

  4. Eulerian Local Bias model • Local bias: A simple model usually adopted in the nonlinear perturbation theory • The number density is assumed to be locally determined by (smoothed) mass density • Apply a Taylor expansion • Phenomenological model, just for simplicity, but divergences in loop corrections

  5. Eulerian Local bias is not physical initial ! density ! field linear ! evolution: ! local linear ! density ! field galaxy ! formation: ! local ! or ! nonlocal nonlinear ! evol.: ! nonlocal nonlinear ! evol.: ! nonlocal number ! density ! field mass ! density ! field Nonlocal ! relation ! in ! general Local ! only ! in ! linear ! regime ! & ! local ! galaxy ! formation

  6. Nonlocal Bias • “Functional” instead of function • For a single streaming fluid (quasi- nonlinear) • Taylor expansion of the functional

  7. Perturbation theory with nonlocal bias • Perturbative expansions in Fourier space: • nonlocal bias: • nonlinear dynamics • It is straightforward to calculate observables, such as power spectrum, bispectrum, etc.

  8. The problem with Eulerian bias • No physical model of Eulerian nonlocal bias !! • Physical models of bias known so far is provided in Lagrangian space • e.g., Halo bias model, Peak bias model,... • In those models, conditions of galaxy formation are imposed on initial (Lagrangian) density field • What is the relation between Eulerian bias and Lagrangian bias?

  9. Eulerian local bias • The Eulerian local bias in nonlinear perturbation theory is dynamically inconsistent

  10. Eulerian and Lagrangian bias • Equivalence of Eulerian and Lagrangian nonlocal bias • Nonlocal Eulerian and Lagrangian biases are equivalent. Only representations are different • The relations can be explicitly derived in perturbation theory: local ! biases ! are ! incompatible! ! At ! least ! one ! must ! be ! nonlocal

  11. When Lagrangian bias is local

  12. Displacement vector Lagrangian (initial) position Eulerian (final) position Lagrangian perturbation theory • Lagrangian perturbation theory • suitable for handling Lagrangian bias • Fundamental variables in Lagrangian picture • Displacement field Buchert (1989) Ψ ( q , t ) = x ( q , t ) − q x ( q , t ) Ψ ( q , t ) q

  13. Redshift-space distortions • Redshift-space distortions are easily incorporated to Lagrangian perturbstion theory • Mapping from real space to redshift space is exactly linear in Lagrangian variables c.f.) nonlinear in Eulerian • Mapping of the displacement field line of sight ˆ z Observer

  14. Lagrangian perturbation theory with Lagrangian (nonlocal) bias • The relation between Eulerian density fluctuations and Lagrangian variables Eulerian Biased field in displacement density field Lagrangian space (& redshift distortions) • Perturbative expansion in Fourier space Kernel of the Lagrangian bias Kernel of the displacement field (& redshift distortions)

  15. Diagrammatics • Introducing diagrammatic rules is useful k 1 k n k b L n ( k 1 , . . . , k n ) k i 1 · · · k i m ⇔ i 1 i m − k k P L ( k ) ⇔ k 1 P ( n ) k 1 L ( k 1 , k 2 , . . ., k n ) ⇔ k n k 2 k 2 i L n,i ( k 1 , k 2 , . . . , k n ) ⇔ k n

  16. Diagrammatics • Shrunk vertices = + = + + + + = + cyc. + cyc. + + + + + cyc. + cyc. + + + • Example: power spectrum + + + + + + · · ·

  17. Multi-point propagator • Multi-point propagator Responses to the nonlinear density field from initial density fluc. • Central role in renormalized perturbation theory • Crocce & Scoccimarro (2006), Bernardeau et al. (2008) Define corresponding quantity in Lagrangian perturbation theory and • Lagrangian bias Γ ( n ) X ( k 1 , . . . , k n ) = k 1 = + + + k n + + + + · · · Renormalization of external vertices •

  18. Multi-point propagator • Example: nonlinear power spectrum in terms of multi-point propagator Bernardeau et al. (2008) k 1 ∞ k � P X ( k ) = n =1 k n • No way of obtaining exact multi-point propagator • In renormalized perturbation theory, large-k limit and one-loop approximation are interpolated by hand

  19. Multi-point propagator • Partial renormalization • Infinite series are partially resummed in Lagrangian bias + Lagrangian perturbation theory j 1 j r k � k � ∞ r 1 ∞ k k � � i 1 i 1 = + = + r = 0 r = 0 i m i m k n k n k 1 k 1 + · · · + + · · · + · · · + + · · ·

  20. Positiveness • Each term in the resummed series is positive and add constructively (common feature with RPT) Crocce & Scoccimarro (2006)

  21. Application: Baryon Acoustic Oscillations N-body This work Linear theory 1-loop SPT Linear theory N-body This work TM ! (2008)

  22. Application: Effects of halo bias on BAO • Apply halo bias (local Lagrangian bias) • redshift-space distortions also included TM ! (2008)

  23. 2-loop corrections Okamura, ! Taruya ! & ! TM ! (2011)

  24. 2-loop corrections Okamura, ! Taruya ! & ! TM ! (2011)

  25. Halo clustering: Comparison with N- body simulations Sato ! & ! TM ! (2011)

  26. Halo clustering: Comparison with N- body simulations Sato ! & ! TM ! (2011)

  27. Halo clustering: Comparison with N- body simulations Sato ! & ! TM ! (2011)

  28. Application: Scale-dependent bias and prim.nG • Previous methods are not accurate enough real ! space: redshift ! space comparison ! with ! simple ! formula ! ! Y R A N I M I L E R P ! ! is ! accurate ! only ! in ! a ! high-peak ! limit

  29. まとめ これまでの現象論的な局所的なオイラー・バイアスは非線形領域で非整 合的 オイラー・バイアスとラグランジュ・バイアスの関係を導出 ラグランジュ空間の局所バイアスはハローモデルという成功例があり、 整合的に摂動論と結びつけることが可能 赤方偏移変形はラグランジュ摂動論での取り扱いが便利 部分的な無限和を取ることが可能で、数値シミュレーションと比較する と、標準的摂動論を実際に改善している • 摂動論を観測可能量に直接結びつける • • • • • 摂動論の改善法 •

  30. Jeong et al. (2010)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend