kensuke kakiuchi nagoya univ the univ of tokyo
play

Kensuke Kakiuchi (Nagoya Univ./ The Univ. of Tokyo) Collaborators: - PowerPoint PPT Presentation

Dec.22, 2017 @Kagoshima Univ. Kensuke Kakiuchi (Nagoya Univ./ The Univ. of Tokyo) Collaborators: Takeru K. Suzuki (The Univ. of Tokyo/ Nagoya Univ.), Yasuo Fukui(Nagoya Univ.), Kazufumi Torii(NRO), Mami Machida(Kyusyu Univ.), Ryoji Matsumoto


  1. Dec.22, 2017 @Kagoshima Univ. Kensuke Kakiuchi (Nagoya Univ./ The Univ. of Tokyo) Collaborators: Takeru K. Suzuki (The Univ. of Tokyo/ Nagoya Univ.), Yasuo Fukui(Nagoya Univ.), Kazufumi Torii(NRO), Mami Machida(Kyusyu Univ.), Ryoji Matsumoto (Chiba Univ.) Kakiuchi et al. In prep. (ArXiv:1712.04209)

  2. Outline  The Galactic Center (GC) region  Vertical structure Simulated l-v diagram in MHD simulation data Column density (10 21 cm -2 ) 300 100 LoS velocity (km s -1 ) 200  Rising loops and 10 100 0 fast downflows 1 -100 -200 0.1 -300 4 2 0 -2 -4 Galactic longitude (degree)

  3. The galactic center (GC) region : Within a few parsec region 200pc 8.0kpc Galactic 銀河面 plane Sgr A Radio continuum (330MHz; LaRosa et al. 2000 ) The Sun Super massive BH Sgr A*, massive star cluster, SNR ✓ ✓ 5-10 % of total molecular gas in the Milky Way collected. Molecular gas: High density, High temperature ✓

  4. Velocity structure in the GC region - 12 CO(1-0) map NANTEN (Torii+10) - Color : column density N(H2)/I(CO) ≒ 2.3 x 10 20 cm -2 (K km s -1 ) -1 ) Only circular motion 300 Line of sight velocity [km/s] Distance from GC (kpc) 10 250 10 200 200 LOS vel. [km/s] 200 9 150 8 100 100 100 7 50 6 5 0 0 5 0 -50 4 -100 -100 3 -150 2 -100 -200 -200 1 0 -250 0 -200 0 5 -5 Galactic longitude[degree] 5 0 -5 Galactic longitude [degree] Complex structure Non-circular motion

  5. Bar potential → Non-circular motion ? ❖ Orbital calculation (Binney+1991) - Bar-like stellar gravitational potential (detected near 3kpc) → gas motion in the GC region ? - As a result, the gas is excited radial motion on bar potential - However, complex features cannot is reproduced, even if 3D simulation ( Rodriguez-Fernandez & Combes 2008 ). A B 300 Line of sight velocity [km/s] 200 LoS velocity [km s -1 ] 200 0.5 100 100 Y [kpc] 0 0 0 B -100 -100 -0.5 A -200 -200 -0.2 0 0.2 4 2 0 -2 -4 4 2 0 -2 -4 5 0 -5 X [kpc] Galactic longitude [deg] Galactic longitude [degree]

  6. Bar potential v.s. Magnetic Field ! ❖ Polarization observation (Chuss+2003, Nishiyama+ 2010) ✓ Detection of vertical field and pallarel field (Disccusion: non-thermal filament structure) ❖ Large magnetic field strength ( ※ typical strength is 1μG @ molecular cloud in disk region ) ✓ globally > 50μG ( Crocker + 2010 ) ✓ Locally ~ 0.1-1mG ( Yuzef-Zadeh+1984 ) ✓ Inner the dark cloud 2-5 mG ( Pilai et al. 2015 ) The loop structure of molecular cloud ❖ (Fukui+06, Machida+09, Torii+10a,b) It has potential that it is sign of Parker Instability. ✓

  7. Vertical Structure 12 CO(1-0) map NANTEN (Torii+10) 4 Galactic latitude 2 0 -2 -4 5 0 -5 Galactic longitude - Vertical motion can play important roles c.f. The Galactic center radio lobe (GCL; Sofue & Handa 1984) Double helix structure (Enokiya+2014)

  8. Parker Instability Parker (1966,1967), Matsumoto et al.(1988) Magnetic buoyancy > Gravity force Vertical component of magnetic field : Fluid particle Low Magnetic Gas flow buoyancy High P B ∝ B 2 Gravity : unstable Gravitational energy : stable → kinematic energy

  9. MHD simulation in the GC region (Suzuki+2015, cf, Machida+2009) SETUP ❖ Simulated l-v diagram ✓ Ideal MHD & locally isothermal gas Column density (10 21 cm -2 ) 300 100 LoS velocity (km s -1 ) ✓ Axismetry gravitational potential 200 10 100 0 1 -100 (Miyamoto & Nagai 1975) -200 Initial magnetic field: 0.1 -300 4 2 0 -2 -4 Initial gas profile: hydrostatic equilibrium Galactic longitude (degree) Non-circular motion : excited by magnetic activity Observational features(e.g. parallelogram structure) reproduce

  10. Overview: Radius vs velocity (Averaged 0< φ<2π, |z| < 1 kpc) Initial rotational speed: ~ 50-200 km/s RMS (root mean square)Vertical speed: ~ 10-30 km/s Vertical motion excited by magnetic activity

  11. Overview: Mass flux to vertical direction ~ upflow speed Free fall velocity ~ downflow speed

  12. Overview: Gas flows and structure in global --track the motions of fulid elements with t=399.5-402.5Myr. ✓ Ubiquitously, vertical flows exist Average life ~ 4-6 Myr

  13. Overview: Gas flows and structure in global --track the motions of fulid elements with t=399.5-402.5Myr.

  14. Overview: Gas flows and structure in global --track the motions of fulid elements with t=399.5-402.5Myr. ~ upflow speed Free fall velocity ~ downflow speed

  15. Overview: Gas flows and structure in global --track the motions of fulid elements with t=399.5-402.5Myr. Region X

  16. Overview: Gas flows and structure in global --track the motions of fulid elements with t=399.5-402.5Myr. Region X Observer

  17. Simulated l-v diagram High LoS velocity (t = 401.0 Myr) 100 300 Column density (10 21 cm -2 ) 200 LoS velocity (km s -1 ) y 10 100 90 135 45 0 1 180 0 -100 225 315 -200 270 x 0.1 -300 4 2 0 -2 -4 視点 (270 ° ) Galactic longitude (degree) (r=8.0kpc)

  18. Simulated l-v diagram (t = 401.0 Myr) High LoS velocity 100 300 Column density (10 21 cm -2 ) Large 200 LoS velocity (km s -1 ) velocity dispersion y 10 100 90 135 45 0 1 180 0 -100 225 315 -200 270 x 0.1 -300 4 2 0 -2 -4 Obs.(270 ° ) Galactic longitude (degree) (r=8.0kpc)

  19. Magnetic field line in region X Region X MF1 Z (kpc) zoom MF2 Z (kpc) Distance along Magnetic Fieldline (kpc) ✓ Magnetic arch-like structure !

  20. Rising loop & Fast downflows MF1 MF2 Z (kpc) Z (kpc) Velocity (km/s) Velocity (km/s) Distance along Magnetic Fieldline (kpc) Distance along Magnetic Fieldline (kpc) ✓ Loop -foot (A): downflows ~100 km/s The gases fall down to one side ✓ Loop-top (B): Rising ~ 50 km/s Vertical velocity ↑

  21. Rising loop & Fast downflows MF1 MF2 Z (kpc) Z (kpc) Number density (cm -3 ) Number density (cm -3 ) Distance along Magnetic Fieldline (kpc) Distance along Magnetic Fieldline (kpc) ✓ Downflows with high density ✓ The gases collect and compress

  22. Rising loop & Fast downflows MF1 MF2 Z (kpc) Z (kpc) Number density (cm -3 ) Number density (cm -3 ) Distance along Magnetic Fieldline (kpc) Distance along Magnetic Fieldline (kpc) ✓ Downflows with high density ✓ The gases collect and compress

  23. Discussion – Region X in l-v diagram ✓ Different features depending on the viewing angle. Obs.3 (250 ° ) Obs.2 (210 ° ) Column density (10 21 cm -2 ) 100 300 LoS velocity (km s -1 ) 200 10 100 y 0 1 -100 90 135 45 -200 0.1 -300 180 0 4 2 0 -2 -4 4 2 0 -2 -4 225 315 270 Galactic longitude (degree) x Obs.2 (210 ° ) ・ Shape (r=8.0kpc) Obs.3 (250 ° ) ・ Velocity dispersion (r=8.0kpc)

  24. Summary High velocity 100� 300� cm -2 ) Large 200 � s -1 ) � Gas flows � (10 21 � (km� velocity dispersion 10 � � 100� density� velocity� 0� compression � Magnetic buoyancy � 1� Column� -100� LoS� -200� Gravity � 0.1� -300 � 4� � � � � � 2� � � � � � � � � � 0� � � � � � � � -2� � � � � � � � � -4 (Magnetic Activity; Parker Instability) Galactic� longitude� (degree) Downflows along the line of sight High velocity Large velocity dispersion Fall down align the magnetic slope Acceleration : ~100 km/s Footpoint of slope: collect and compress gases 4 2 0 -2 -4

  25. Appendix: Basic Equation Eq. of continuity Eq. of motion Eq. of Induction Axisymmetry gravitational potential (Miyamoto & Nagai 1975)

  26. Magnetic Field in The Galactic Centre Region ❖ Strong magnetic fields ✓ globally > 50μG ( Crocker+ 2010 ) ✓ Locally ~ 100-1000 μ G ( Yuzef-Zadeh+ 1984; Morris 1990; Pillai+15 ) ( ※ a few μG in a typical molecular cloud at the disk) ❖ Amplification of Magnetic fields Parker Instability Differential rotation MRI

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend