t h e i m pa c t o f e a r t h s c at t e r i n g s o n l
play

T H E I M PA C T O F E A R T H S C AT T E R I N G S O N L I G H - PowerPoint PPT Presentation

T H E I M PA C T O F E A R T H S C AT T E R I N G S O N L I G H T D A R K M AT T E R D E T E C T I O N T I M O N E M K E N ( C P - O R I G I N S , O D E N S E ) Based on: [arXiv:1706.02249]* [arXiv:1802.04764]* [arXiv:180?.????]**


  1. T H E I M PA C T O F E A R T H S C AT T E R I N G S O N L I G H T D A R K M AT T E R D E T E C T I O N T I M O N E M K E N ( C P ³ - O R I G I N S , O D E N S E ) Based on: [arXiv:1706.02249]* [arXiv:1802.04764]* [arXiv:180?.????]** * In collaboration with Chris Kouvaris. ** In collaboration with Rouven Essig, Chris Kouvaris, and Mukul Sholapurkar. 24.04.2018 C.N. Yang Institute for Theoretical Physics

  2. 10 - 22 CMB 10 - 27 XQC • Pre-detector Earth CRESST 2017 surface 10 - 32 scatterings affect DAMIC ( 2011 ) the expected CRESST III C R E S S T I 10 - 37 I signal. 10 - 42 1.Diurnal modulations XENON1T d n o u k g r a c b n o u t r i e n 10 - 47 2.Loss of sensitivity 0.1 0.5 1 5 10 Hasenbalg et al, Phys.Rev. D55 (1997) 7350-7355 Starkman et al, Phys.Rev. D41 (1990) 3594 TE, C. Kouvaris, [arXiv:1802:04764]

  3. O U T L I N E I. Terrestrial DM-nucleus scatterings II. Monte Carlo simulation of DM trajectories III. Implications for direct detection • Diurnal modulations • Earth shielding IV. DM-electron scattering experiments

  4. Part I T E R R E S T R I A L D M - N U C L E U S S C AT T E R I N G S

  5. R E L E VA N C E O F E A R T H S C AT T E R I N G S • unobservable underground DM-nucleus scatterings occur frequently for O (pb) cross sections. • these change the DM phase space inside the Earth • Look e.g. at models with a heavy dark photon portal µ + ε F µ ν F 0 µ ν + m 2 X γ µ XA 0 µ A 0 µ L ⊃ g X ¯ φ A 0 ◆ 2 ✓ µ χ p σ χ p ' σ χ e µ χ e • Here tested DM-electron cross sections are accompanied by strong DM-nucleus interactions. S.K. Lee et al, PRD92 (2015) 083517 TE, C. Kouvaris, I. Shoemaker, PRD96 (2017) no.1, 015018

  6. D A R K M AT T E R S C AT T E R I N G I N S I D E T H E E A R T H Probability to scatter after travelling a distance L: •  d x � Z P ( L ) = 1 − exp − � MFP ( ~ v ) x, ~ The mean free path is given by • x ) ⇢ ⊕ ( ~ x ) X � − 1 � total MFP ( ~ v ) = f A i ( ~ χ A i ( ~ v ) x, ~ m A i i • Underground DM-nucleus scatterings have two consequences: A. re-distribution of DM particles inside the Earth B. deceleration of the DM particles • If DM-nucleus interactions are sufficiently strong, these two effects could influence the outcome of a DM detection experiment severely.

  7. Part II M O N T E C A R L O S I M U L AT I O N S O F D A R K M AT T E R T R A J E C T O R I E S

  8. M C S I M U L AT I O N S •Isodetection angle  ~ v ⊕ ( t ) · ~ x lab ( t ) � Θ ( t ) = arccos v ⊕ ( t )( r ⊕ − d lab ) J.I. Collar, F.T. Avignone, Phys. Lett. B275 (1992), 181-185 J.I. Collar, F.T. Avignone, PRD 47 (1993), 5238-5246 Hasenbalg et al., PRD 55 (1997), 7350-7355

  9. E A R T H S H A D O W B.J. Kavanagh, R. Catena, C. Kouvaris, JCAP 1701 (2017) no 01, 012 An analytic treatment of single Earth scatterings. • Limited to scattering probabilities of ≤ 10%. • The EarthShadow code is public: https://github.com/bradkav/EarthShadow

  10. M C S I M U L AT I O N V S E A R T H S H A D O W A C R U C I A L C O N S I S T E N C Y C H E C K

  11. R E S U LT S : D M S P E E D D I S T R I B U T I O N S 0 0 30 30 60 60 90 90 120 120 150 150 180 180 0 0 30 30 60 60 90 90 120 120 150 150 180 180 TE,C. Kouvaris, JCAP 1710 (2017) no.10, 031

  12. Part III I M P L I C AT I O N S F O R D I R E C T D E T E C T I O N

  13. E V E N T R AT E A C R O S S T H E G L O B E

  14. D I U R N A L M O D U L AT I O N

  15. D I U R N A L M O D U L AT I O N • We can predict the local diurnal modulation for every laboratory. • Both amplitude and phase. • Different experiments could be cross- δ ( Φ lab ) = 100 R max − R min correlated. R max

  16. D I U R N A L M O D U L AT I O N

  17. Part III.b W H E N T E R R E S T R I A L D E T E C T O R S L O S E S E N S I T I V I T Y Atmosphere Earth crust Lead shielding Detector

  18. D A R K M AT T E R S T O P P I N G P O W E R W I T H O U T M C • DM traversing through matter lose energy: E max R d h E i d σ i Z X = � n i ( x ) d E R E R d x d E R i 0 • Method A: Find cross section, for which the overburden makes even the fastest particles undetectable. • Method B: Compute the change of the DM spectrum ∞ d R d v vf ( v ) d σ i Z = n DM n T d E R d E R v min ( E R ) J.H. Davis, Phys.Rev.Lett. 119 (2017) no.21, 211302 B.J. Kavanagh, [arXiv:1712.04901]

  19. D M S H I E L D I N G B Y T H E E A R T H C R U S T 10 14 10 11 1 10 8 0.5 10 5 10 2 0.1 10 - 1 10 - 46 10 - 44 10 - 42 10 - 40 10 - 38 10 - 36 10 - 34 10 - 32 10 - 30 M.S. Mahdawi, G.R. Farrar, JCAP 1712 (2017) 004 TE,C. Kouvaris, [arXiv:1802:04764]

  20. D M - N U C L E U S C O N S T R A I N T S 10 - 22 CMB 10 - 27 XQC CRESST 2017 surface 10 - 32 DAMIC ( 2011 ) CRESST III C R E S S T I 10 - 37 I 10 - 42 XENON1T n d o u g r c k b a o r i n e u t n 10 - 47 0.1 0.5 1 5 10

  21. Part IV D M - E L E C T R O N S C AT T E R I N G E X P E R I M E N T S

  22. D M - E L E C T R O N E X P E R I M E N T S ����� ������� 0 Models with heavy dark photon • � χ = � ��� portal and kinetic mixing: � - ��������� [ ����� ] - 500 ◆ 2 ✓ µ χ p σ χ p ' - 1000 µ χ e σ χ e �������� ����� - 1500 0 2000 4000 6000 8000 10000 12000 Testable DM-electron cross • # �� ����������� sections are connected to very 10 - 26 �� - �������� ����� �������� σ �� - � [ �� � ] strong, but unobservable DM- ����� �������� nucleus interactions. 10 - 29 ����� ����� In the most extreme case these • 107 g - d,11 e - 10 - 32 could “blind" a detector. 10 - 35 10 - 38 S.K. Lee et al, PRD92 (2015) 083517 100 g - yr, 2 e - ( proj. ) 10 - 41 TE, C. Kouvaris, I. Shoemaker, PRD96 (2017) no.1, 015018 1 5 10 50 100 5001000 � �� [ ��� ]

  23. D M E L E C T R O N E X P E R I M E N T S What’s new? Implement the full computation of event rates for liquid noble gas • experiments and semiconductor targets (ionization and crystal form factors). R. Essig et al., JHEP 1605 (2016) 046 R. Essig et al., Phys.Rev. D96 (2017) no.4, 043017 DarkSide collaboration, [arXiv:1802:06998] Main focus lies on light mediators • ➡ new q-dependence in the cross section alter the scattering kinematics and stopping power of the overburden ➡ IR divergencies and charge screening for small momentum transfers (relevant for DM masses below ~10 MeV) Use both analytic and MC methods. •

  24. S C AT T E R I N G D Y N A M I C S W I T H L I G H T M E D I AT O R S 1.4 1.4 1.4 F DM ~ 1 F DM ~ 1 F DM = 1 q q 2 1.2 1.2 1.2 1.0 1.0 1.0 f N ( cos α ) f N ( cos α ) f N ( cos α ) 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 cos α cos α cos α m DM = 1 MeV m DM = 10 MeV m DM = 100 MeV m DM = 1000 MeV v = 50 km v = 300 km v = v esc + v ⊕ sec sec D M F O R M FA C T O R V S C H A R G E S C R E E N I N G 8 1 , for heavy mediator , > a 2 q 2 > < q ref for ED interaction , q , F DM ( q ) = F A ( q ) = ⌘ 2 1 + a 2 q 2 ⇣ > q ref for light mediator . > , : q

  25. P R E L I M I N A RY R E S U LT S 10 - 24 10 - 23 10 - 22 10 - 24 10 - 25 10 - 23 10 - 25 10 - 24 10 - 26 10 - 26 10 - 25 10 - 27 10 - 27 Y 10 - 26 R Y 10 - 28 A 10 - 28 R 10 - 27 N A 10 - 29 10 - 29 I M N 10 - 28 I σ e [ cm 2 ] I 10 - 30 M σ e [ cm 2 ] σ e [ cm 2 ] L 10 - 30 10 - 29 E I L 10 - 31 R E P 10 - 30 10 - 31 R 10 - 32 P 10 - 31 10 - 32 10 - 33 10 - 32 10 - 34 10 - 33 10 - 33 10 - 35 10 - 34 10 - 34 10 - 36 10 - 35 10 - 35 10 - 37 F DM =( α m e / q ) 2 F DM = 1 10 - 36 10 - 36 10 - 38 F DM = α m e / q 10 - 37 10 - 39 10 - 37 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 m χ [ MeV ] m χ [ MeV ] m χ [ MeV ] XENON10 XENON100 SENSEI DarkSide - 50 SuperCDMS ( 2018 ) To Do Further experiments: DarkSide-50 & SuperCDMS Projections for e.g. high-altitude experiments. better understanding on electronic stopping power

  26. D A M A S C U S D a r k M a t t e r S i m u l a t i o n C o d e f o r U n d e rg ro u n d S c a t t e r i n g s The code is public: http://github.com/temken/

  27. Thank you!

  28. B A C K U P : M O D E L L I N G T H E E A R T H Density Profile: Preliminary • Reference Earth Model (PREM) A.M. Dziewonski et al, Physics of the Earth and Planetary Interiors 25 (1981) 297-356 Composition: Two compositional • layers (core & mantle) W. McDonough, Treatise on Geochemistry, vol. 3, 559-577. Elsevier, 2014 [1312.1202] Element Core[%] Mantle[%] Element Core[%] Mantle[%] 56 Fe 32 S 85.5 6.26 1.9 0.03 16 O 52 Cr 0 44 0.9 0.26 28 Si 23 Na 6 21 0 0.27 24 Mg 31 P 0 22.8 0.2 0.009 58 Ni 55 Mn 5.2 0.2 0.3 0.1 40 Ca 12 C 0 2.53 0.2 0.01 27 Al 1 H 0 2.35 0.06 0.01 Total 100.26 99.83

  29. B A C K U P : I N I T I A L C O N D I T I O N S • Initial velocity: v 2 ✓ ◆ 1 − ~ f halo ( ~ v ) = exp Θ ( v esc − | ~ v | ) v 2 N esc 0 v ini = ~ v ⊕ ( t ) ~ v halo − ~ • Initial position: p r ini = R ~ e z + ⇠ r ⊕ (cos � ~ e x + sin � ~ e y ) ~

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend