sympletic methods for long term integration of the solar
play

Sympletic Methods for Long-Term Integration of the Solar System A. - PowerPoint PPT Presentation

Sympletic Methods for Long-Term Integration of the Solar System A. Farr es J. Laskar M. Gastineau S. Blanes F. Casas J. Makazaga A. Murua ( ) Institut de M eleste et de Calcul des ecanique C Eph em erides,


  1. Sympletic Methods for Long-Term Integration of the Solar System A. Farr´ es ∗ J. Laskar M. Gastineau S. Blanes F. Casas J. Makazaga A. Murua ( ∗ ) Institut de M´ eleste et de Calcul des ´ ecanique C´ Eph´ em´ erides, Observatoire de Paris Instituto de Matem´ atica Multidisciplinar, Universitat Polit` ecnica de Val` encia Institut de Matem` atiques i Aplicacions de Castell´ o, Universitat Jaume I Konputazio Zientziak eta A.A. saila, Informatika Fakultatea 22 Abril 2013 Seminari Informal de Matem` atiques de Barcelona (SIMBa)

  2. BackGround NBP Model SympSplit Overview of the Talk 1 Why do we want long-term integrations of the Solar System ? 2 The N-Body Problem (Toy model for the Planetary motion) 3 Symplectic Splitting Methods for Hamiltonian Systems A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 2 / 60

  3. BackGround NBP Model SympSplit A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 3 / 60

  4. BackGround NBP Model SympSplit A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 4 / 60

  5. BackGround NBP Model SympSplit A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 5 / 60

  6. BackGround NBP Model SympSplit A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 6 / 60

  7. BackGround NBP Model SympSplit Planetary Solution • La2004 : numerical, simplified, tuned to DE406 (6000 yr) • INPOP : numerical, ”complete”, adjusted to 45000 observations. 1 Myr : 6 months of CPU. • La2010 : numerical, less simplified, tuned to INPOP (1 Myr ). 250Myr : 18 months of CPU. A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 7 / 60

  8. BackGround NBP Model SympSplit A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 8 / 60

  9. BackGround NBP Model SympSplit Numerical Precision La2010a is fine for 60 Myr But 18 months of CPU for 250 Myr ! (Laskar et al, 2010) A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 9 / 60

  10. BackGround NBP Model SympSplit For further information http://www.imcce.fr/Equipes/ASD/insola/earth/earth.html A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 10 / 60

  11. BackGround NBP Model SympSplit The Challenge 1 The NUMERICAL PRECISION of the solution. We want to be sure that the precision is not a limiting factor. 2 The SPEED of the algorithm. As La2010a took nearly 18 months to complete. A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 11 / 60

  12. The N - Body Problem

  13. BackGround NBP Model SympSplit The N-Body Problem We consider that we have n + 1 particles ( n planets + the Sun) interacting between each other due to their mutual gravitational attraction. We consider: • u 0 , u 1 , . . . , u n and ˙ u 0 , ˙ u 1 , . . . , ˙ u n the position and velocities of the n + 1 bodies with respect to the centre of mass. • ˜ u i = m i ˙ u i the conjugated momenta. The equations of motion are Hamiltonian: n u i || 2 H = 1 || ˜ m i m j � � − G || u i − u j || . (1) 2 m i i =0 0 ≤ i < j ≤ n Notice that the Hamiltonian is naturally split as H = T ( p ) + U ( q ). A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 13 / 60

  14. BackGround NBP Model SympSplit The N-Body Problem (Planetary Case) In an appropriate set of coordinates: H = H A ( p , q ) + ε H B ( q ) H = H A ( a ) + ε H B ( a , λ, e , ω, i , Ω) Where H A corresponds to the Keplerian motion and H B to the Planetary interactions . Change of variables: ( p , q ) − → ( a , λ, e , ω, i , Ω) (Wisdom & Holman, 1991 Kinoshita, Yoshida, Nakai, 1991) A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 14 / 60

  15. BackGround NBP Model SympSplit Jacobi Coordinates We consider the position of each planet ( P i ) w.r.t. the centre of mass of the previous planets ( P 0 , . . . , P i − 1 ). � � v 0 = ( m 0 u 0 + · · · + m n u n ) /η n ˜ v 0 = ˜ u 0 + · · · + ˜ u n , . u i − ( � i − 1 u i − m i ( � i − 1 v i = j =0 m j u j ) /η i − 1 ˜ v i = ( η i − 1 ˜ j =0 u j )) /η i where η i = � i j =0 m j . In this set of coordinates the Hamiltonian is naturally split into two part: H J = H Kep + H pert : � η i − 1   n n v i || 2 � 1 η i || ˜ − G m i η i − 1 � || v i || − m 0 � m i m j � � �  , H J = + G m i −  2 η i − 1 m i v i || r i || ∆ ij i =1 i =2 0 < i < j ≤ n where ∆ i , j = || u i − u j || . A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 15 / 60

  16. BackGround NBP Model SympSplit Heliocentric Coordinates We consider relative position of each planet ( P i ) with respect to the Sun ( P 0 ). � � r 0 = u 0 ˜ r 0 = ˜ u 0 + · · · + ˜ u n , , r i = u i − u 0 ˜ r i = u i ˜ In this set of coordinates the Hamiltonian is naturally split into two part: H H = H Kep + H pert : n � 1 � m 0 + m i � � � ˜ r i · ˜ r j � − G m 0 m i m 0 − G m i m j � r i || 2 � H H = 2 || ˜ + , m 0 m i r i ∆ ij i =1 0 < i < j ≤ n where ∆ i , j = || r i − r j || . A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 16 / 60

  17. BackGround NBP Model SympSplit Jacobi Vs Heliocentric coordinates In both cases we have H = H Kep + H pert . But: - H H = H A ( p , q ) + ε ( H B ( q ) + H C ( p )), - H J = H A ( p , q ) + ε H B ( q ), where H A , H B and H C are integrable on their own. Remarks: • the size of the perturbation in Jacobi coordinates is smaller that the size of the perturbation in Heliocentric coordinates, giving a better approximation of the real dynamics. • the expressions in Heliocentric coordinates are easier to handle, and do not require a specific order on the planets. A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 17 / 60

  18. BackGround NBP Model SympSplit Jacobi Vs Heliocentric (size of perturbation) np,case Heliocentric Pert. Jacobi Pert. 2, MV 5.264837243090217E-011 2.507597928893501E-011 2, JS 2.336559877558003E-006 8.255625324341979E-007 4, MM 9.165205211655520E-010 6.334248585000000E-010 4, JN 2.718444355584028E-006 8.716288751176844E-007 8, MN 2.804289442433957E-006 8.715850310304487E-007 8, VP 2.802584202262463E-006 8.715856645507914E-007 9, All 2.804292431703275E-006 8.715852470196316E-007 Table: Size of the perturbation in Heliocentric Vs Jacobi coordinates for different type of planetary configurations. A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 18 / 60

  19. BackGround NBP Model SympSplit Jacobi Vs Heliocentric coordinates i , j Heliocentric Pert. Jacobi Pert. 1,2 5.26483724309021731E-011 2.50759792889350194E-011 2,3 7.59739225393103695E-010 5.95009062984183148E-010 3,4 3.48299827426021253E-011 5.52675544625019969E-011 4,5 6.43324771287086414E-009 3.25222776727405301E-010 5,6 2.33655987755800395E-006 8.25562532434197998E-007 6,7 5.62192585020240051E-008 1.31346460445138887E-008 7,8 5.38356857904020469E-009 2.86142920053947548E-009 8,9 4.52500558799539687E-013 2.40469325009519492E-013 Table: Size of the perturbation in Heliocentric Vs Jacobi coordinates for the consecutive pair of planets. Here, 1 = Mercury, 2 = Venus, 3 = Earth-Moon Barycentre, 4 = Mars, 5 = Jupiter, 6 = Saturn, 7 = Uranus, 8 = Neptune, 9 = Pluto. A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 19 / 60

  20. Symplectic Splitting Methods for Hamiltonian Systems

  21. BackGround NBP Model SympSplit Splitting Methods for Hamiltonian Systems Let H ( q , p ) be a Hamiltonian, where ( q , p ) are a set of canonical coordinates. dz dt = { H , z } = L H z , (2) where z = ( q , p ) and { , } is the Poisson Bracket ( { F , G } = F q G p − F p G q ). The formal solution of Eq. (2) at time t = τ that starts at time t = τ 0 is given by, z ( τ ) = exp( τ L H ) z ( τ 0 ) . (3) • The main idea is to build approximations for exp( τ L H ) that preserve the symplectic character. • We focus on the special case H = H A + ε H B , where H A and H B are integrable on its own. This is the case of the N-body planetary system, where the system can be expressed as a Keplerian motion plus a small perturbation due to their mutual interaction. A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 21 / 60

  22. BackGround NBP Model SympSplit Splitting Methods for Hamiltonian Systems The formal solution of Eq. (2) at time t = τ that starts at time t = τ 0 is given by, z ( τ ) = exp( τ L H ) z ( τ 0 ) = exp[ τ ( A + ε B )] z ( τ 0 ) . (4) where A ≡ L H A , B ≡ L H B . We recall that H A and H B are integrable, hence we can compute exp( τ A ) and exp( τ B ) explicitly. We will construct symplectic integrators, S n ( τ ), that approximate exp[ τ ( A + ε B )] by an appropriate composition of exp( τ A ) and exp( τε B ): n � S n ( τ ) = exp( a i τ A ) exp( b i τε B ) i =1 A. Farr´ es (IMCCE) SympMeth for Long-Term Integration of SolSys Abril 22nd, 2013 22 / 60

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend