symmetry breaking in quantum 1d jellium
play

Symmetry breaking in quantum 1D jellium Sabine Jansen - PowerPoint PPT Presentation

Symmetry breaking in quantum 1D jellium Sabine Jansen Ruhr-Universit at Bochum joint work with Paul Jung (University of Alabama at Birmingham) Warwick University, March 2014 Context Setting : quantum statistical mechanics. Charged fermions


  1. Symmetry breaking in quantum 1D jellium Sabine Jansen Ruhr-Universit¨ at Bochum joint work with Paul Jung (University of Alabama at Birmingham) Warwick University, March 2014

  2. Context Setting : quantum statistical mechanics. Charged fermions move on a line, homogeneous neutralizing background. Wigner ’34 : in order to understand the effect of electronic interactions in solids, crude approximation: periodic charge distribution (atoms) ≈ homogeneous positive charge distribution. Keep electronic interactions. Jellium, one-component plasma. Possible scenario: at low density, electrons minimize repulsive Coulomb energy by forming a periodic lattice. Wigner crystal. Dimension one: Wigner crystallization proven for the classical jellium at all densities ( Kunz ’74, Brascamp-Lieb ’75, Aizenman-Martin ’80 ), for the quantum and classical jellium at low densities Brascamp-Lieb ’75 . This talk : Wigner crystallization for quantum 1D jellium at all densities. Proof combines arguments of cited works, notably Kunz’s transfer matrix approach.

  3. Outline 1. Setting 2. Main result ◮ existence of the thermodynamic limit of all correlation functions ◮ translational symmetry breaking at all β, ρ > 0 3. Proof ideas ◮ path integrals ◮ transfer matrix, Perron-Frobenius

  4. Electrostatic energy and Hamiltonian ◮ N particles of charge − 1, positions x 1 , . . . , x N ∈ [ a , b ] ⊂ R ◮ one-dimensional Coulomb potential V ( x − y ) = −| x − y | ◮ neutralizing background of homogeneous charge density ρ = N / ( b − a ) ◮ total potential energy � b N � � U ( x 1 , . . . , x N ) := − | x j − x k | + ρ | x j − x | d x a 1 ≤ j ≤ k ≤ N j =1 � b � b − ρ 2 | x − x ′ | d x d x ′ . 2 a a ◮ H N Hilbert space for N fermions = antisymmetric functions in L 2 ([ a , b ] N ). ◮ Hamilton operator N ∂ 2 H N := − 1 � + U ( x 1 , . . . , x N ) . ∂ x 2 2 j j =1 Dirichlet boundary conditions at x = a and x = b .

  5. Free energy and reduced density matrices ◮ β > 0 inverse temperature ◮ Thermodynamic limit N N → ∞ , a → −∞ , b → + ∞ , b − a → ρ. ◮ Canonical partition function Z N ( β ) := Tr exp( − β H N ) = 1 � [ a , b ] N exp( − β H N )( x , x ) d x 1 . . . d x N , N ! exp( − β H N )( x ; y ) integral kernel of exp( − β H N ). ◮ Free energy f ( β, ρ ) = − lim 1 β N log Z N ( β ) . ◮ n -particle reduced density matrices � ρ N [ a , b ] N − n exp( − β H N )( x , x ′ ; y , x ′ ) d x ′ n ( x 1 , . . . , x n ; y 1 , . . . , y n ) ∝ proportionality constant fixed by � [ a , b ] n ρ N n ( x ; x ) d x 1 · · · d x n = N ( N − 1) · · · ( N − n + 1)

  6. Results Theorem (Free energy) �� β log(1 − e − β √ 2 ρ ) 1 ρ 2 + 1 − 1 � f ( β, ρ ) = 12 ρ + β log z 0 ( β, ρ ) . z 0 ( β, ρ ) principal eigenvalue of a transfer operator. Free energy of independent harmonic oscillators + a correction term. Theorem (Symmetry breaking) (i) In the thermodynamic limit along a , b ∈ ρ − 1 Z , all reduced density matrices have uniquely defined limits ρ n ( x 1 , . . . , x n ; y 1 , . . . , y n ) = lim ρ N n ( x 1 , . . . , x n ; y 1 , . . . , y n ) . The convergence is uniform on compact subsets of R n × R n , and ρ N n and ρ n are continuous functions of x and y . (ii) The limit is periodic with respect to shifts by λ = ρ − 1 , ρ n ( x 1 − λ, . . . ; . . . , y n − λ ) = ρ n ( x 1 , . . . ; . . . , y n ) for all n ∈ N and x , y ∈ R n . For every θ / ∈ λ Z there is some n ∈ N and some x ∈ R n such that ρ n ( x − θ ; x − θ ) � = ρ n ( x ; x ) : λ is the smallest period.

  7. Periodicity of the one-particle density Limit state on fermionic observable algebra has smallest period λ = ρ − 1 . Question : periodicity visible at the level of the one-particle density? Brascamp, Lieb ’75 : one-particle density is ∞ − ( x − k λ ) 2 � � � ρ 1 ( x ; x ) = F ( x − k λ ) exp 2 σ 2 k = −∞ F even, log-concave function, 2 σ 2 = [ √ 2 ρ tanh( β � ρ/ 2)] − 1 . At low density ( λ = ρ − 1 ≫ σ ), one-particle density has smallest period λ = ρ − 1 . At high density, we do not know whether this is true. Note A state can have a non-trivial period but constant one-particle density. Example Ψ N = · · · ∧ 1 [ − 1 , 0) ∧ 1 [0 , 1) ∧ · · · ∧ 1 [ n , n +1) ∧ · · · One-particle density � n 1 [ n , n +1) ( x ) ≡ 1, periodicity visible only at the level of two-point correlation functions.

  8. Energy as a sum of squares Observation : when particles are labelled from left to right a ≤ x 1 ≤ · · · ≤ x N ≤ b , energy is a sum of squares N ( x j − m j ) 2 + N m j = a + ( j − 1 � U ( x 1 , . . . , x N ) = ρ 12 ρ, 2) λ. j =1 Baxter ’63 . Elementary computation: x j − a + b � � � 2 � − ( x k − x j ) + ρ 2 j < k j x j − a + b � 2 , � � � � = ( k − 1) x k − ( N − j + 1) x j + ρ 2 k j j then complete the squares. Remark: Boltzmann weight: a Gaussian times a characteristic function (of a convex set). Starting point for Brascamp, Lieb ’75 .

  9. Transfer matrix for the classical jellium Partition function for the classical system: � b � b N � ( x j − m j ) 2 � � Z N ( β ) ∝ d x 1 · · · d x N exp − βρ � x 1 ≤ · · · ≤ x N � . 1 a a j =1 Three easy steps: 1. change variables y j = x j − m j 2. define Gaussian measure µ ( d y ) = exp( − βρ y 2 ) d y 3. write indicator that particles are ordered as product of pair terms N N � � � x 1 ≤ · · · ≤ x N � = 1 ( y j − 1 ≤ y j + λ ) = K ( y j − 1 , y j ) 1 j =2 j =2 Remember m j − m j − 1 = λ = ρ − 1 . Partition function becomes � Z N ( β ) ∝ R N µ ( d y 1 ) · · · µ ( d y N ) F ( y 1 ) K ( y 1 , y 2 ) · · · K ( y N − 1 , y N ) G ( y N ) . Functions F ( y 1 ) = 1 ( y 1 + m 1 ≥ a ) and G ( y N ) = 1 ( y N + m N ≤ b ) encode boundary conditions. Representation used in Kunz’s proof.

  10. Path integrals I Work in L 2 (Weyl chamber) instead of antisymmetric wave functions. W N ( a , b ) = { x | a ≤ x 1 ≤ · · · ≤ x N ≤ b } , Fermionic Hilbert space is isomorphic to L 2 ( W N ( a , b )). Hamiltonian becomes ∂ 2 − 1 + N � + ρ ( x j − m j ) 2 � � H N = 12 ρ. 2 ∂ x 2 j 1 ≤ j ≤ N Fermi statistics ⇒ Dirichlet boundary conditions at x j = x j +1 . Apply Feynman-Kac formula in Weyl chamber. Path space E = { γ : [0 , β ] → R | γ continuous } µ xy = Brownian bridge measure on E (not normalized). Non-colliding paths N ( a , b ) := { ( γ 1 , . . . , γ N ) ∈ E N | ∀ t ∈ [0 , β ] : a < γ 1 ( t ) < · · · < γ N ( t ) < b } . W β Feynman-Kac formula: � β � e − ρ � N 0 ( γ j ( t ) − m j ) 2 d t 1 W β � e − β H N ( x ; y ) ∝ µ x 1 y 1 ⊗ · · · ⊗ µ x N y N N ( a , b ) ( γ ) j =1

  11. Path integrals II � � β � e − ρ � N 0 ( γ j ( t ) − m j ) 2 d t 1 W β � Z N ( β ) ∝ µ x 1 x 1 ⊗· · ·⊗ µ x N x N j =1 N ( a , b ) ( γ ) d x 1 · · · d x N . W N ( a , b ) Probability measure on non-colliding paths W β N ( a , b ) ⊂ E N . Gaussian measure conditioned on non-collision. Particle positions recovered as path starting points x j = γ j (0).

  12. Transfer matrix for the quantum jellium Step 1 : change variables η j ( t ) = γ j ( t ) − m j . Step 2 : Define Gaussian measure ν on 1-particle path space � β � 1 � � � � η ( t ) 2 d t ν ( d η ) f ( η ) = µ xx ( d η ) exp − ρ f ( γ ) . d x c ( β, ρ ) E R E 0 Step 3 : Transfer operator in L 2 ( E , ν ) encoding non-collision: � � � ( K f )( η ) = K ( η, ξ ) f ( ξ ) ν ( d ξ ) , K ( η 1 , η 2 ) = 1 ∀ t : η 1 ( t ) < η 2 ( t ) + λ . E Partition function Z N ( β ) ∝ � F , K N − 1 G � , suitable F , G ∈ L 2 ( E , ν ). Operator K is compact (Hilbert-Schmidt), irreducible ⇒ || K || = largest eigenvalue z 0 ( β, ρ ) > 0 (Krein-Rutman / Perron-Frobenius). Asymptotics of the partition function ↔ principal eigenvalue z 0 ( β, ρ ) of K . Infinite volume measure on E Z : Shift-invariant, ergodic. Theorems on free energy, existence and uniqueness of the limits of correlation functions follow.

  13. Symmetry breaking I ◮ It is enough to look at “diagonal” correlation functions ρ ( x ; x ) / expectations of multiplication operators. Instead of dealing with full quantum state, look at probability measure P on point configurations ω = { x j | j ∈ Z } . Shifted configuration is τ θ ω = { x j + θ | j ∈ Z } . ◮ Correlation functions are factorial moment densities of P � ρ n ( x ; x ) d x 1 · · · d x n = E � N I ( N I − 1) · · · ( N I − n + 1) � , I ×···× I N I = # ω ∩ I = # { j | x j ∈ I } number of particles in interval I . Correlation functions determine measure P uniquely (moment problem). ◮ If measure P and shifted measure P ◦ τ θ are mutually singular, then there must be some correlation function ρ n and some x 1 , . . . , x n such that ρ n ( x 1 − θ, . . . ; . . . , x n − θ ) � = ρ n ( x 1 , . . . ; . . . , x n ). We prove P ◦ τ θ ⊥ P whenever θ / ∈ λ Z .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend