superradiant emission scheme free electron spin flip
play

SUPERRADIANT EMISSION SCHEME, FREE ELECTRON SPIN-FLIP EMISSION OF - PowerPoint PPT Presentation

SUPERRADIANT EMISSION SCHEME, FREE ELECTRON SPIN-FLIP EMISSION OF RADIATION (FESFER) Avi Gover The FEL Knowledge Center for Radiation Sources and Applications Tel Aviv University, Fac. of Engineering - Physical Electronics. June 2005


  1. SUPERRADIANT EMISSION SCHEME, FREE ELECTRON SPIN-FLIP EMISSION OF RADIATION (FESFER) Avi Gover The FEL Knowledge Center for Radiation Sources and Applications Tel – Aviv University, Fac. of Engineering - Physical Electronics. June 2005

  2. OUTLINE 1. SUPERRADIANT* EMISSION – RADIATION SCHEMES AND GENERAL FORMULATION. 2. STIMULATED–SUPERRADIANCE FEL OSCILLATOR. 3. FREE ELECTRON SUPERRADIANT SPIN–FLIP EMISSION OF RADIATION . * R. H. Dicke, Phys. Rev. 93 , 99(1954)

  3. (b) Superradiant emission (a) Spontaneous emission λ λ N w λ N w l b λ w l b (a) (b)

  4. PB-FEL I. Schnitzer, A. Gover, “The Prebunched FEL…”, NIMPR A237, 124 (1985) Wiggler B magnets k N Spent e-beam E B Bend CSR N b k Spent G.L. Carr et al, “High power e-beam THz radiation…”, Nature 420, 153 (2002) E

  5. Other superradiant emission schemes • Coherent Smith-Purcell • Cerenkov Radiation • Transition Radiation • Cyclotron Resonant Emission (CRE)

  6. Excitation of modes (Waveguide or Free Space) ( ) ( ) ( ) ∑ ~ ω = ω E r , C z , E r q q ± q ( ) ( ) ~ ( ) ∑ ω = ω H r , C z , H r q q ± q N N ( ) ( ) 1 ∑ ∑ ω − ω = Δ = − Δ out in W C C C q q qj qj P 4 = = j 1 j 1 q ∞ ( ) ( ) ( ) ~ ∫ Δ = − ⋅ ω * i t W e v t E r t e dt qj j q j − ∞ dW 2 ( ) 2 = ω q out P C ω π q q d ⎡ ⎤ + + 2 2 2 2 w ~ ~ x y x y = = − − + ϕ + 0 E E exp ⎢ ik i ikz ⎥ ( ) ( ) ( ) q 00 2 ⎣ ⎦ w z w z 2 R z

  7. Useful Coherent Power from a spatially coherent source Filter 2 ΔΘ t 2 Θ coh 2a 2r coh 2r t L Coherent-Radiation Line - Source Target Plane

  8. Spatially Coherent Spectral Power N N ( ) ( ) ( ) ( ) ∑ ∑ ω ω = ω + Δ ω + Δ i t out in 0 st C C C e oj C q q qe qj = = j 1 j 1 { dW 2 ( ) 2 = ω + q in P C ω π q q d 2 ( ) ( ) N ω + Δ ω ⋅ + ∑ i t 0 C e oj qe = j 1 ⎡ ⎤ ( ) ( ) ( ) N ω + ∗ ω ⋅ Δ ω ⋅ + + i t ∑ in 0 C C e oj c . c . ⎢ ⎥ ⎣ q qe ⎦ = j 1 ⎫ ⎡ ⎤ ( ) ( ) N + ∗ ω ⋅ Δ ω + ≡ ∑ in st ⎬ C C c . c . ⎢ ⎥ ⎣ q qj ⎦ ⎭ = j 1 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ dW dW dW dW ≡ ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ + ⎜ ⎟ q q q q ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ω ω ω ω ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ d d d d − in sp / SR ST SR st

  9. Superposition of radiation wavepackets: a) Spontaneous emission b) Superradiance c) Stimulated emission d) Stimulated superradiance ( a) ( b ) out C q Δ out C C q 3 q Δ Δ C C q 3 q 2 Δ C q 1 Δ C q 2 Δ C 1 q ( c ) ( d ) Δ C q 4 Δ C q 3 Δ C out q 2 C Δ q C Δ st q 1 C q 3 Δ st C in q 1 C q in out C C q q

  10. The Bunch Form-Factor ( ) ( ) ∞ 2 Δ ( ) ⎛ ⎞ 0 W ω dW ω = ' 1 ' i t ' ∫ = ⋅ ω M f t e dt ⎜ ⎟ qe 2 q 2 0 M ( ) N ⎜ ⎟ b 2 0 0 ω π ω b ⎝ ⎠ P d 8 2 − − ∞ × t q SR ( ) 4 ω := M e ) ( ) ( ( ) = − π 2 2 for a Gaussian e-beam bunch distribution : f t exp t t / t 0 0 b b ( ) ( ) ω 2 = − ω 2 2 / M exp t 2 1 b b 0.8 0.6 ω M ( ) 0.4 0.2 0 0 1 2 3 4 5 6 ω ω t b

  11. The Macropulse Form-Factor for a Pulse Composed of a Periodic Train of N M Micro-Bunches f(t-t 0 ) ⎛ ⎞ dW 2 N ( ) ( ) ( ) ( ) ⎜ ⎟ 2 = Δ ω ω 2 ω 2 q 0 W M M ⎜ ⎟ ω π qe b M ⎝ ⎠ P d 8 q SR ( ) Δ ω πω ω / 1 ( ) sin N = ω = M b M ( ) πω ω ω M / N sin n nN M b b M

  12. The Macropulse Form-Factor Function Drawn for N M = 8

  13. Spatially Coherent Spectral Power For PB-FEL : 2 ⎛ ⎞ ⎛ ⎞ 2 2 2 dW N e Z ( ) ( ) eB L ⎜ ⎟ ⎜ ⎟ = ω 2 θ q b q 2 w M sinc L 2 ⎜ ⎟ ⎜ ⎟ ω π β γ b 2 ⎝ ⎠ ⎝ ⎠ d 16 mc k A z w em SR θ = ω v - k - k / z z w For CSR : 2 ⎛ ⎞ ⎛ ⎞ 2 2 2 ⎡ ⎤ 4 dW N e Z ( ) ( ) eB L d ⎜ ⎟ = ⎜ ⎟ ω θ q b q b M sinc L 2 ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ω π βγ θ b ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ d 4 mc A d L em SR θ = ω v z k - / z

  14. Line-Shape Function PB-FEL CSR ( ( ) ) θ ω 2 sin c L 2 2 ⎡ ⎤ ( ) d θ sinc L 2 ⎢ ⎥ θ ⎣ ⎦ d L Δ ω ( ) θ = π ω − ω Δ ω L 2 0

  15. Synchrotron Radiation Generation electron(s) Intensity ⏐ E 2 ⏐ E/N Electric field N super-radiant enhancement THz time freq. (1/time) W.D. Duncan and G.P. Williams,”Infra-red Synchrotron Radiation From Electron Storage Rings”, Applied Optics 22, 29l4 (1983).

  16. Schematic of the TAU table-top Prebunched-Beam Free Electron Maser.

  17. PB – FEM SUPERRADIANCE MEASUREMENT

  18. PB-FEL STIMULATED SUPERRADIANCE MEASUREMENT

  19. STIMULATED– SUPERRADIANCE FEL OSCILLATOR

  20. Stimulated-Superradiance PB-FEL Oscillator P(0) = R rt P(L) P(L) P out = TP(L) Wave packet e-bunch

  21. The Pendulum Equation model – Saturated PB-FEL Ψ 2 d = − Ψ 2 K sin s 2 dz d Ψ θ = dz k a a / 2 = w s K γγ β s 2 z z ~ 1 ω ⎛ ⎞ e E ω 2 e 2 P ⎜ ⎟ = = a ⎜ ⎟ s μ ε mc mc ⎝ A ⎠ em

  22. Ultimate Energy Extraction Efficiency Scheme in PB-FEL

  23. Saturation Dynamics of a Single e-Bunch in a fixed wiggler length for different K s 4 ) (stored power ~ K s θ 0 θ 0 θ 0 θ 0 θ 0 3 π 3 π 3 π 3 π 3 π ψ 0 ψ 0 ψ 0 ψ 0 ψ 0 = = = = = = = = = = 0 0 0 0 0 K K K K K 4.706 1.7 3.273 4.316 5.013 10 10 10 10 10 5 5 5 5 5 θ θ θ θ θ 0 0 0 0 0 5 5 5 5 5 10 10 10 10 10 ψ ψ ψ ψ 2 2 2 2 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8 ψ 2 0 2 4 6 8

  24. Bistability of PB-FEL Oscillator P(L) = P(0)/R rt P sat2 P(Lw) P(L) = P(L;P(0)) P unst P sat1 P(0)

  25. CLOSED-TRAJECTORIES SATURATION STABLE POINT

  26. OPEN-TRAJECTORIES SATURATION STABLE POINT

  27. R rt = 0.97 G-1 = 0.005

  28. Oscillation build-up in Stimulated Superradiance FEL Oscillator Post - Saturation Detuning Control Fixed Detuning

  29. FREE ELECTRON SUPERRADIANT SPIN–FLIP EMISSION OF RADIATION .

  30. Electron Spin Resonance Emission Frequency In the e-rest frame: ω = μ h ' g B ' s B z In the lab frame: = B ' B z z [ ( ) ] ω = γ ω − β ω ' ck s z s z z s ω γ ( ) ' = ω Θ ω = For k c cos : s 0 z z s − β Θ s 1 cos z Θ = For 0 : ( ) ω = + β γ ω 1 ' s z z s 0 = γ = ⇒ = = B 3 . 5 kGauss , 100 f ' 10 GHz , f 2 THz z s s

  31. Free Electron Spin-Flip Emission of Radiation (FESFER) Axially polarized Radiation Acceleration ω s e* B z Transversely polarized Acceleration Radiation “ π /2 pulse section” ω s e * e* B z B b ω b I P = = ⇒ = P b ω ; FOR f 2THz, 8mW/A h max I max s s e b

  32. Ratio of SR-FESFER to SP-ECR 2 ⎛ ⎞ ⎛ ⎞ μ ε ω μ [ ] s ' dW ( ) ( ) 1 L Z g ⎜ ⎟ ⎜ ⎟ = ⋅ ∗ θ − + ˆ ˆ q 0 0 σ e sin 2 2 2 0 s 0 B s 2 1 c L N P N P ⎟ ⎜ ⎟ ⎜ + ω π q γ s s 0 s 0 d 4 A v Z c 2 ⎝ ⎠ ⎝ ⎠ em z q / SP SR ( ) ω s π ω − + dW d ( ) 2 2 r h N 1 P N P 1 q = SP SR b ( ) s s 0 s 0 ε ω c 2 dW d mc N 2 2 n q SP π ω r h 1 ≈ b 2 s NP ε s 0 2 mc 2 2 n

  33. CONCLUSIONS • SUPERRADIANT EMISSION FROM femto/pico-SEC E-BEAM BUNCHES IS A PROMISSING HIGH POWER THz RADIATION SCHEME. • FORMULATION FOR THE CALCULATION OF COHERENT SPECTRAL CHARACTERISTICS OF ANY KIND OF RADIATION SCHEMES WAS PRESENTED. A STIMULATED-SUPERRADIANCE OSCILLATOR SCHEME PROVIDES • ULTIMATE RADIATIVE CONVERSION EFFICIENCY (WITH ENERGY RETRIEVAL SCHEMES). • A RADIATION EMISSION SCHEME FROM ACCELERATED ELECTRONS IS PROPOSED: FREE ELECTRON SPIN-FLIP EMISSION OF RADIATION (FESFER). • A SHORT BUNCH OF POLARIZED ELECTRONS CAN PROVIDE ENHANCED (SUPERRADIANT) SR-FESFER RADIATION, WITH APPRECIABLE INTENSITY RELATIVE TO CRE RADIATION .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend