superfluid helium 3 universal concepts for condensed
play

Superfluid Helium-3: Universal Concepts for Condensed Matter and - PowerPoint PPT Presentation

Center for Electronic Correlations and Magnetism University of Augsburg Superfluid Helium-3: Universal Concepts for Condensed Matter and the Big Bang Dieter Vollhardt GSI Kolloquium, Darmstadt; May 9, 2017 Periodic table of the elements


  1. Center for Electronic Correlations and Magnetism University of Augsburg Superfluid Helium-3: Universal Concepts for Condensed Matter and the Big Bang Dieter Vollhardt GSI Kolloquium, Darmstadt; May 9, 2017

  2. Periodic table of the elements Noble gas Helium: after hydrogen the most abundant element in the universe

  3. Helium Two stable Helium isotopes: 4 He, 3 He 4 He: air, oil wells, ... Janssen/Lockyer/Secci (1868) Ramsay (1895) 4 3 He He Cleveit (UO 2 ) − − ≈ × ≈ × 6 6 5 10 1 10 4 air He air + → + α 3 He: Li n H 6 1 3 3 0 1 ↓ Research on macroscopic samples 2 He 3 of 3 He only since 1947 4 He: Coolant, Welding, Balloons 3 He: - Contrast agent in medicine - Neutron detectors - 3 He- 4 He dilution refrigerators (quantum computers!)

  4. Helium spherical, hard core diameter ∼ 2.5 Å Atoms: • hard sphere repulsion Interaction: • van der Waals dipole/multipole attraction Boiling point: 4.2 K, 4 He Kamerlingh Onnes (1908) 3.2 K, 3 He Sydoriak et al. (1949) { isotropic Dense, simple liquids short-range interactions extremely pure

  5. Helium 40 solid 3 He P (bar) [10 bar = 1 MPa] 4 He 30 normal fluid 20 superfluid superfluid λ-line 10 ? vapor 0 0 1 2 3 4 5 6 T(K) • spherical shape  weak attraction Atoms: • light mass  strong zero-point motion < T  0, P 3 MPa: Helium remains liquid   λ ∝  → → T 0 quantum phenomena on a macroscopic scale k T B

  6. Helium 4 He 3 He 2 e - , S = 0 Electron shell: p p n Nucleus: n n p p 1 S = S = 0 2  Quantum Atom(!) is a Fermion Boson  liquids T λ = 2.2 K T c = ??? Phase transition Bose-Einstein condensation  superfluid with frictionless flow

  7. Interacting Fermions (Fermi liquid): Ground state k z Landau (1956/57) Fermi surface  k y Fermi sphere k x

  8. Instability of Fermi liquid k z + 2 non-interacting fermions k y Fermi sphere k x

  9. ⇒ Arbitrarily weak attraction instability Cooper (1956) k z Cooper pair k k y k x − k Universal fermionic property

  10. ⇒ α − β Arbitrarily weak attraction Cooper pair k k ( , ; , ) , α k ξ 0 − k , β Antisymmetry Ψ = ψ ↑ ↑ Ψ = ψ ↑↓ − ↓ ↑ + r ( ) ( ) r = = L L 1,3,5,... 0,2,4,... + ψ ↑↓ + ↓ ↑ 0 ( ) r S=0 (singlet) + ψ ↓↓ - r ( ) S=1 (triplet) L = 0 (“s-wave”): isotropic pair wave function L > 0 (“p,d,f,… -wave”): anisotropic pair wave function 3 He: Strongly repulsive interaction  L > 0 expected

  11. BCS theory Bardeen, Cooper, Schrieffer (1957) Generalization to macroscopically many Cooper pairs ε c <<E F Energy gap Δ(T) Energy gap Δ(T) here: L=0 (s-wave) here: L=0 (s-wave) E F  Pair condensate = − T ε N V with transition temperature 1.13 exp( 1/ ( 0) ) c c L in weak coupling theory ε c , V L : Magnitude ? Origin ?  T c ? Thanksgiving 1971: Transition in 3 He at T c = 0.0026 K Osheroff, Richardson, Lee (1972) Osheroff, Gully, Richardson, Lee (1972)

  12. The Nobel Prize in Physics 1996 "for their discovery of superfluidity in helium-3" David M. Lee Douglas D. Osheroff Robert C. Richardson Cornell (USA) Stanford (USA) Cornell (USA)

  13. Phase diagram of Helium-3 { P-T phase diagram isotropic short-range interactions Dense, simple liquid extremely pure nuclear spin S=1/2 ordered disordered Solid (bcc) spins spins http://ltl.tkk.fi/research/theory/helium.html Fermi liquid

  14. Phase diagram of Helium-3 { P-T phase diagram isotropic short-range interactions Dense, simple liquid extremely pure nuclear spin S=1/2 http://ltl.tkk.fi/research/theory/helium.html viscosity high viscosity (machine oil)  zero

  15. Phase diagram of Helium-3 P-T-H phase diagram http://ltl.tkk.fi/images/archive/ab.jpg Millikelvin Cryostat WMI Garching “Very (ultra) low temperatures”: T << T boiling ~ 3 K and << T backgr. rad. ~ 3 K

  16. Superfluid phases of 3 He Experiment: Osheroff, Richardson, Lee, Wheatley, ... Theory: Leggett, Wölfle, Mermin, …  L=1, S=1 (“p-wave, spin-triplet“) in all 3 phases Attraction due to spin fluctuations Anderson, Brinkman (1973) orbital part ˆ l  anisotropy directions in every 3 He Cooper pair ˆ spin part d

  17. … and a mystery! NMR experiment on nuclear spins I = 1 2  Osheroff et al. (1972) ω ω − ω ∝ ∆ T 2 2 2 ( ) L ?! 3mT ω L ω = γ H  Larmor frequency: L superfluid normal T T C,A ⇔ Shift of ω L spin-nonconserving interactions − g  K  T 7  nuclear dipole interaction 10 D C Origin of frequency shift ?! Leggett (1973)

  18. The superfluid phases of 3 He

  19. B-phase ↑↑ ↑↓ + ↓↑ ↓↓ All spin states occur equally , , ∆ = ∆ Balian, Werthamer (1963) ( ) k 0 Vdovin (1963) energy gap Fermi sphere ↔ “(pseudo-) isotropic state“ s-wave superconductor Weak-coupling theory: stable for all T<T c

  20. A-phase Spin states ↑↑ ↓↓ occur equally ,  strong gap anisotropy ∆ = ∆ ˆ ˆ, ) ˆ k k l Anderson, Morel (1961) ( ) sin( 0 Cooper pair ˆ l orbital angular momentum energy gap  Helped to understand unconventional pairing in • heavy fermion superconductors (CeCu 2 Si 2 , UPt 3 , …) Fermi sphere • high-T c (cuprate) superconductors Energy gap with point nodes Strong-coupling effect “axial (chiral) state”

  21. 3 He-A: Spectrum near nodes Volovik (1987) ˆ l ^ l ˆ l E k Excitations ∆ k Energy gap E k Fermi sea = Vacuum ( ) = − 2 + ∆ sin ( ˆ ˆ E k k k l 2 2 2 2 p p ij v , ) = g Lorentz invariance F k F 0 i j 2   ∆ + + ˆ ˆ k l chirality “up” = + δ − 1 l l l l  ij 2   g v ( ) e =  i j ij i j F k   − ˆ − ˆ  F k l chirality “down” 1  = ˆ k F l A = − e p k A

  22. 3 He-A: Spectrum near nodes The Universe in a Helium Droplet, Volovik (2003) ˆ l ^ l ˆ l E k Excitations ∆ k ⇔ Energy gap E k Fermi sea = Vacuum Fermi point: spectral flow of fermionic charge ( ) = − 2 + ∆ sin ( ˆ ˆ E k k k l 2 2 2 2 p p p p ij ij v , ) = = g g Lorentz invariance F k F 0 i i j j 2   ∆ + + ˆ ˆ k l chirality “up” = + δ − 1 l l l l  ij 2   g v ( ) e =  i j ij i j F k   − ˆ − ˆ  F k l chirality “down” 1  ⇔ = E cp Massless, chiral leptons, e.g., neutrino ( ) p  Chiral (Adler) anomaly measured Bevan et al. (1997)

  23. A 1 -phase In finite magnetic field Only spin state ↑↑ Long-range ordered magnetic liquid

  24. Cooper pairing of Fermions vs. Bose-Einstein condensation ξ ≈ 10 Å } Cooper pair: “Quasi-boson“ ξ ≈ 10000 Å Conventional superconductors 0 BCS ξ ≈ 150 Å Superfluid 3 He 0 High-T C superconductors ? 0 Superfluid 4 He: ξ  1 Å BEC Tightly packed fermions (boson) 0 Leggett (1980) New insights from BEC of cold atoms

  25. Broken Symmetries & Long-Range Order

  26. Broken Symmetries & Long-Range Order ↔ Normal 3 He 3 He-A, 3 He-B: 2 nd order phase transition T<T c : higher order, lower symmetry of ground state I. Ferromagnet T>T T<T c c ≠ Order parameter = Average magnetization: M 0 M 0 ⊂ SO(3) U(1) SO(3) Symmetry group: T<T C : SO(3) rotation symmetry in spin space spontaneously broken

  27. Broken Symmetries & Long-Range Order ↔ Normal 3 He 3 He-A, 3 He-B: 2 nd order phase transition T<T c : higher order, lower symmetry of ground state II. Liquid crystal T>T T<T c c ⊂ SO(3) U(1) SO(3) Symmetry group: T<T C : SO(3) rotation symmetry in real space spontaneously broken

  28. Broken Symmetries & Long-Range Order ↔ Normal 3 He 3 He-A, 3 He-B: 2 nd order phase transition T<T c : higher order, lower symmetry of ground state III. Conventional superconductor . . . . . . . . . . . . . T>T T<T c c ↓ = e φ ∆ c c − i † † 0 Pair amplitude complex order parameter ↑ k k ϕ → i c c e † † Gauge transf. : gauge invariant not gauge invariant σ σ k k Symmetry group U(1) —

  29. Broken Symmetries & Long-Range Order ↔ Normal 3 He 3 He-A, 3 He-B: 2 nd order phase transition T<T c : higher order, lower symmetry of ground state III. Conventional superconductor . . . . . . . . . . . . . T>T T<T c c T<T C : U(1) “gauge symmetry“ spontaneously broken

  30. Broken symmetries in superfluid 3 He L=1, S=1 in all 3 phases orbital part ˆ l Cooper pair: spin part ˆ d { phase (complex order parameter) Superfluid, anisotropy direction in real space liquid crystal Quantum coherence in anisotropy direction in spin space magnet × + × + Characterized by L S = 18 real numbers 2 (2 1) (2 1 ) 3x3 order parameter matrix A iμ SO(3) S ´ SO(3) L ´ U(1) φ symmetry spontaneously broken Leggett (1975)  SU(2) L ´ SU(2) R ´ U(1) Y for electroweak interactions Pati, Salam (1974)

  31. Mineev (1980) Broken symmetries in superfluid 3 He Bruder, Vollhardt (1986) SO(3) S ´ SO(3) L ´ U(1) φ symmetry broken 3He-A ´ U(1) L z - φ U(1) S z Unconventional pairing ˆ l Cooper pairs Fixed absolute orientation

  32. … solution of the NMR mystery

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend